
 

 

INTRODUCTION  

Sedimentation is a global issue concerned with the design of 

irrigation works and hydroelectric schemes. Sediment 

deposited causes loss of conveyance capacity in irrigation 

canals and water supply channels for hydropower and 

damage turbine blades. An off taking canal or intake 

structure should be designed in a way to have maximum 

flow capacity and minimum sediment entrance. Entry of 

sediment in canals and rivers is the main problem which 

many countries are facing frequently[19].  Several silt 

ejection devices are currently being utilized to avoid 

sediment entry in the off taking canal at diversion headwork 

i.e. tunnel type silt ejectors [8], vortex tube ejectors[4, 5, 

13], vortex chambers [2, 3], settling basin [17,25] etc. 

Vortex type ejector is a cheaper method to exclude sediment 

content moving as bed load into the canal. Sediment 

particles near the bottom of the canal can be extracted by a 

vortex tube which usually deployed and embedded within 

canal bottom either normal to the flow or at some angle. 

The bottom water layer along with sediments enters into the 

tube through a slit provided at the upper portion of the 

ejection tube. The placement of the vortex tube is such that 

it allows the entry of silt water throughout the canal width 

parallel to the canal bed, and entering silt water produces 

flow with strong vortex motion, and from there on silt water 

make its way to the outlet of the tube and discharged to an 

outflow escape channel, which usually returns the 

loaded water (enters through slit bed)to the river. These 

devices show a good potential in situations where the 

concentration of near-bed sediments is higher. The 

feasibility of vortex ejector is assessed with its sediment 

trapping capability which is described as the amount of 
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flow capacity and minimum sediment entrance. Entry of 

in canals and rivers is the main problem which 

many countries are facing frequently[19].  Several silt 

ejection devices are currently being utilized to avoid 

sediment entry in the off taking canal at diversion headwork 

ortex tube ejectors[4, 5, 

13], vortex chambers [2, 3], settling basin [17,25] etc. 

Vortex type ejector is a cheaper method to exclude sediment 

content moving as bed load into the canal. Sediment 

particles near the bottom of the canal can be extracted by a 

vortex tube which usually deployed and embedded within 

canal bottom either normal to the flow or at some angle. 

The bottom water layer along with sediments enters into the 

tube through a slit provided at the upper portion of the 

t of the vortex tube is such that 

water throughout the canal width 

parallel to the canal bed, and entering silt water produces 

flow with strong vortex motion, and from there on silt water 

nd discharged to an 

outflow escape channel, which usually returns the sediment-

water (enters through slit bed)to the river. These 

devices show a good potential in situations where the 

sediments is higher. The 

vortex ejector is assessed with its sediment 

trapping capability which is described as the amount of 

extraction of sediments from the flowing water by the 

vortex tube [4]. Various parameters viz. sediment size, ratio 

of slit thickness to tube diameter (t/

concentration, flow velocity (v) into the channel are 

affecting the efficiency of vortex tube silt ejector. Lot of 

researchers [4, 12, 15] has investigated

devices related the hydraulic design and sediment removal 

efficiency prediction. 

Trapping efficiency of the vortex tube silt ejector can be 

described as the ratio of sediment escaped from the canal 

through the vortex tube to the total sediment load carried by 

the canal. The maximum load of the sediments moving as 

bed-load can often be removed at the expense of between10 

to 20% of the total discharge of canal[4].

Several studies specified in literature highlighted the 

influence of several geometrical parameters of vortex 

device in an attempt to improve the sediment extraction 

potential of vortex ejector. Despite some parametric study 

on these devices, the design of vortex tube silt ejector is still 

lacking specified design details as well as simple and 

defined relationships. Moreover, due to the 

flow behavior in vortex tubes, it is hard to fit a conventional 

regression model for the precise estima

efficiency [26]. Therefore, artificial intelligence

methods can be effective in providing a good approach 

towards generalization and efficiency prediction due to its 

high learning and reasoning capabilities. In the present 

scenario, the soft computing based 

extensively employed in many fields of research related to 

the subject of water and environmental engineering [1,9, 10, 

14, 21, 22, 23]. 

Recently, some modelling techniques have been employed 
to relate trapping capability of the vortex tube ejector with 
the flow parameters along with geometrical parameters. 

Atkinson [4], based on the experimental
equation to evaluate the trapping efficiency of the vortex 
ejection devices. Tiwari et al. [26] dis
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extraction of sediments from the flowing water by the 

vortex tube [4]. Various parameters viz. sediment size, ratio 

of slit thickness to tube diameter (t/d), sediment 

concentration, flow velocity (v) into the channel are 

affecting the efficiency of vortex tube silt ejector. Lot of 

researchers [4, 12, 15] has investigated the silt ejection 

devices related the hydraulic design and sediment removal 

Trapping efficiency of the vortex tube silt ejector can be 

described as the ratio of sediment escaped from the canal 

through the vortex tube to the total sediment load carried by 

. The maximum load of the sediments moving as 

an often be removed at the expense of between10 

to 20% of the total discharge of canal[4]. 

Several studies specified in literature highlighted the 

influence of several geometrical parameters of vortex 

device in an attempt to improve the sediment extraction 

potential of vortex ejector. Despite some parametric study 

vortex tube silt ejector is still 

lacking specified design details as well as simple and well-

relationships. Moreover, due to the complexity of 

in vortex tubes, it is hard to fit a conventional 

regression model for the precise estimations of trapping 

efficiency [26]. Therefore, artificial intelligence-based 

methods can be effective in providing a good approach 

towards generalization and efficiency prediction due to its 

high learning and reasoning capabilities. In the present 

the soft computing based modelling has been 

extensively employed in many fields of research related to 

the subject of water and environmental engineering [1,9, 10, 

techniques have been employed 
capability of the vortex tube ejector with 

the flow parameters along with geometrical parameters. 

experimental study, proposed an 
equation to evaluate the trapping efficiency of the vortex 
ejection devices. Tiwari et al. [26] disused the application of 
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ANFIS and ANN to the data observed with experimental 

study along with a comparison to some past works related 
to vortex tube silt ejector. Singh et al. [24] developed a 

predictive equation based on multilinear regression analysis 

for evaluating the trapping capability of the vortex tube 

ejector and compared it with soft computing methods viz. 

ANFIS, M5 tree, random forest, and GP regression. They 
recommended the use of random forest regression-based 
modelling as the method is observed to be accurate in 

efficiency prediction. The present study is focused on 

assessing the performance of support vector machines 

regression (SVM) and Gaussian process regression (GP) on 

the prediction of the trapping capability of vortex devices. 

Stochastic approach with Radial basis kernel function 
(RBF) and Pearson VII kernel function(PUK) as kernel 

functions is employed in both techniques for the 

comparative analysis. The modelling results are also 

compared with the existing predictive models developed by 

previous researchers. 

Gaussian Process Regression:  

Gaussian Process regression offers a probabilistic, 
nonparametric supervised learning technique to solve the 
nonlinear and compound function mapping hidden in data 
sets. Rasmussen and Williams [18] presented in their theory 
that adjoining observation should deliver information about 
each other; it is a technique of specifying a prior directly 
over function space. The mean and covariance of Gaussian 
distribution are vector and matrix whereas the Gaussian 
process is over function. GP regression models are able to 
understand the predictive distribution analogous to test 
input. For detailed information about GP regression and 
different covariance functions, readers are directed to the 
studies of Rasmussen and Williams [18] and Kuss[11]. 

Support Vector Machine (SVM): 

This method is introduced by Vapnik [27] and derived from 
statistical learning theory. Main principle of SVM is the 
optimal separation of classes, from the separable classes, 
SVM selects the one which has minimum generalization 
error from the infinite number of linear classifier or set the 
upper limit to error which is obtained from structural risk 

minimization. Thus maximum margin between the two 
classes could be obtained from the selected hyperplane and 
sum of distances of the hyperplane from the closest point of 

two classes will set maximum margin between two classes. 

In support vector regression, the input is first mapped onto 
an m-dimensional feature space using some fixed or 
nonlinear mapping, and then a linear model is constructed 
in this feature space. A nonlinear function is used to map 
data from input space to feature space for making a non-
linear classifier out of a linear classifier[16]. For the 

detailed study of SVM, readers are conferred to Vapnik[27]. 

Stochastic Gradient Boosting 

Friedman[6] proposed a gradient boosting based ensemble 

technique for the regression models. Stochastic gradient 
boosting works in a similar way as the other boosting 
methods [7].It generalizes them by optimizing an arbitrary 

differentiable loss function. The proposed algorithm uses a 

base model to obtain the eligibility of those training set sub-
samples that are randomly selected in each iteration[20]. 

The size of the sub-sample used in each iteration is a user-

defined parameter and is taken as a fraction of the size of 

the total training dataset. Generally, a smaller fraction of the 

training dataset introduces randomness into the model and 
helps preventing the over-fitting. The use of a smaller 
fraction of training dataset makes speed the algorithm 

because the base regression model has to fit smaller datasets 

at each iteration. For a training dataset {(xi, yi), I = 1, 

2,…n}, where xi  is an input vector described by p features 

and yi is an output variable used during training with n 

number of training samples and a base algorithm φ(y,F(x)). 
The model is initialized with a constant value, 

�0��� = arg min ∑ ������=1 , �                             (1) 

The so-called pseudo-residuals are calculated from: 

��� = − ������,������
������ ������=��−1���                              (2) 

where, -rim is the path of steepest decent, φ is the loss 
function, and m = 1, 2,……M, where M is the number of 
iterations an algorithm is run. The parameter γm is then 
calculated as: ��� min� ∑ ��� !" � ,�#$"�� � + ℎ#�� ��              (3) 

The model is then updated as: ����� = ��−1��� + �ℎ����                                 (4) 
where, ℎ���� is the base learner. 

METHODOLOGY AND DATA SET 

Experimental Program   

The experimental work iscarried out in the main channel 
having dimensions 30 cm wide, 50 cm deep, and 149 cm 
long as shown in Figure 1. The maximum water supply of 
the main channel is 16 l/sec with re-circulating system of 
water. The arrangement of water for experimentation is that 
the water is first collected into a high head water head tank 
from where the water reached out at experimental channel 
under gravity. In the main channel, the flow discharge and 
velocity are controlled by a valve and regulating gate, 
respectively. The installation of vortex tube silt ejector 

models into the experimental channel is at a particular 
distance of 3.92 m from the channel inlet where vortex 
model is placed throughout full width of channel 
perpendicular to the flow so that problem of turbulence does 
not occur in the channel or around the tube otherwise 

sediment particles tend to hold into suspension and also 
have the risk of slit clogging. During experimentation, 

velocity is kept constant to 33 cm/s. The sediments are 
extracted into the trapping device from flowing water into 
vortex tube. The sediments which are collected from vortex 

tube silt ejector into the trapping device aredried and 
properly weighed. To maintain the reliability of 

experiments, the experiments areconducted three times 
each. From experimental work 144 observations are 

assembled. The summary of the experimental scheme is 
illustrated in Table 1.  
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Data Set 

From the total data set of 144 observations, 100 

observations arbitrarily are chosen for training purpose, 

whereas the models are tested with a remaining set of 44 

observations. The input variables are comprised of the size 

of sediments (S) in mm, the concentration of sediments (C) 

in ppm, slit thickness to tube diameter ratio (t/d), and 

extraction ratio (R) in %, whereas trapping efficiency (E) in 

% was taken as the output. The structure of train and test 

data observations are listed in Table 2.  

 

Figure 1: A pictorial view of the experimental set-up. 

Table 1: Summary of experimental scheme. 

D 

(mm) 

T 

(mm) 

T/D Sediment Size(mm) Extraction Ratio (%) 

44.0 5.5 0.125 0.840, 0.504, 0.424, 0.210 6.250, 3.440 

28.0 3.5 0.125 0.840, 0.504, 0.424, 0.210 3.125, 1.750 

18.7 2.3 0.125 0.840, 0.504, 0.424, 0.210 2.500, 1.310 

44.0 3.2 0.300 0.840, 0.504, 0.424, 0.210 7.500, 3.940 

28.0 8.4 0.300 0.840, 0.504, 0.424, 0.210 3.750, 2.370 

18.7 5.6 0.300 0.840, 0.504, 0.424, 0.210 2.940, 1.560 

 

Table 2: The structure of train and test data observation. 

Input 
Units 

Train Data  

Variables Min Max Mean St. Dev. 

S mm 0.210 0.840 0.494 0.228 

C Ppm 207.0 473.0 381 62.364 

R % 1.25 7.5 3.364 1.78 

t/d - 0.125 0.3 0.216 0.088 

E % 16.8 83.2 36.946 15.053 

  Test Data  

  Min Max Mean St. Dev. 

S mm 0.210 0.840 0.494 0.229 

C ppm 207.0 265.0 241 22.3 

R % 1.25 7.5 3.302 1.887 

t/d - 0.125 0.3 0.205 0.088 

E % 19.9 85.1 40.109 15.981 
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STATISTICAL PERFORMANCE 

EVALUATION CRITERIA 

To assess the proficiency of numerous used modelling 

techniques, Correlation of coefficient (CC), Coefficient of 

determination (R
2
), Root mean square error (RMSE) and 

Mean absolute error (MAE) values are calculated with 

training and the testing data-set. Single factor ANOVA test 

has been also used to analyze the statistical difference in 

actual and predicted values of different techniques. 

Coefficient of Correlation (CC)  

The coefficient of correlation is basically applied to 

determine the attainment of the numerical forecast. The 

coefficient of correlation (CC) is calculated as 

'' =  ��∑ ()� –�∑ (��∑ )�
+�[∑ (-$�∑ (�-] �[∑ )-$�∑ )�-]             (5) 

x is the actual values and y is the estimated values. 

Coefficient of Determination (R
2
) 

The coefficient of determination is also applied to 

determine the attainment of the model. Its value is 

calculated as: 

/2 = 1 ��∑ ��� –�∑ ���∑ ��
+�[∑ �2−�∑ ��2] �[∑ �2−�∑ ��2]2

2
                       (6) 

Root Mean Square Error (RMSE) 

Root Mean Squared Error is the most commonly utilized 

method to quantify the attainment of the model. The root 

mean square error (RMSE) is calculated as: 

/345 = +"� �∑ �� − ��6�� !"   (7) 

Mean Absolute error (M.A.E.) 

Mean Absolute error is the most frequently utilized method 

to measure the attainment of the model. The Mean Absolute 

Error (M.A.E.) is calculated as: 

375 = ∑ |($)|9:;<�                              (8) 

RESULTS AND DISCUSSION 

Atkinson [4]suggested an equation for estimation of 

trapping efficiency of vortex tube ejector as: 

= = >.@∗,@∗BC [ D@∗EF B<G{IJK LMNB"}].PQ<R S@∗K LMQF N.T � LM�
>.@∗,@∗BC [ D@∗<F B<G{IJK LMNB"}].PQ<R S@∗K LMQF N.T � LM� (9) 

where� = non-dimensional bed layer thickness (2U�) 

relative to depth of flow, V= mean velocity of flow, W∗= 

shear velocity, X = von Karman’s constant=0.4, W∗ ′ = grain 

shear velocity, Z = non-dimensional depth of diaphragm 

slab from bed level relative to depth of flow, [ = fall 

velocity of the particle and \ = any depth of water from the 

bed level. 

Singh et al. [24] proposed this simple predictive relationship 

for the trapping efficiency of vortex tube ejector based on 

multivariate regression analysis: 5 = 26.914_.6`'_._6ab/U_.66`/_.d6e               (10) 

where5 = trapping efficiency (%), 4 = sediment size 

(mm),' = sediment concentration (ppm), b/U = ratio of slit 

thickness and diameter of tube, / = extraction ratio (%). 

Based on the current experimental study, Atkinson [4] 

equation proposed for vortex silt ejection devices has higher 

relative errors than Singh et al. [24] when estimating the 

trapping capacity of vortex tube silt ejector on this data.  

Results of both empirical equations plotted between 
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predicted trapping efficiency versus actual trapping 

efficiency are shown in Figure 2. Three particular standard 

error indices: coefficient of correlation (CC), Root mean 

square error (RMSE)and mean absolute error (MAE) were 

chosen to examine the performance of empirical equations 

(Table 3). Inferred from Table 3 and Figures 2, Singh et al. 

[24] equation with CC= 0.9159, RMSE = 6.3242and MAE 

= 5.2149is observed to have relatively less error and higher 

accuracy than the equation proposed by Atkinson [4].  

Table 3: Performance of empirical equations 

Equations CC RMSE MAE 

Singh et al. (2018) 0.9159 6.3242 5.2149 

Atkinson (1994) -0.2995 31.3166 26.2956 

Developing the GP regression-based models (Gaussian 

noise, γ,f and ω) are a trial and error method. The models 

are developed with the help of two kernel functions (PUK 

and RBF). Both kernel functions(PUK and RBF)are 

compared by selecting a constant Gaussian noise function 

value to 0.01. The primary parameters are presented in 

Table 4.Meta algorithm (Stochastic) is also used with GP 

regression. In Stochastic GP regression (SGP)-based model 

the selected model parameters are same as the GP models. 

During the GP and SGP models development (Table 5), it is 

observed that the RBF kernel has a better performance as 

compared to PUK kernel function. To check the superiority 

of GP and SGP models, every phase of progress (training 

and testing) is presented in Figure 3. The prediction 

performance of the models is evaluated by the error indices 

(Table 5)at every stage of development and testing. 

Comparison of GP and SGP models suggest that stochastic 

approach improves the performance of GP models. 

SGP_RBF model works well than other GP models. The 

CC values of the SGP model with RBF kernel function are 

observed as 0.9984 and 0.9774 for training and testing, 

respectively. Moreover, evaluating Figure 3indicates that 

the SGP model with RBF kernel function isthe best 

fitrelative to other GP models to estimate the trapping 

efficiency of sediments by vortex tube ejector.  

  

(b) 

Figure 2: Performance of empirical equations on the current data set 
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Table 4: User-defined parameters used with GP and SGP 

Approaches Radial basis kernel Pearson VII kernel 

GP Gaussian noise 

= 0.01, γ = 5 

Gaussian noise = 0.01, 

ω = 0.1, σ  = 1 

Stochastic GP (SGP) I= 100, 

Gaussian noise = 0.01, γ = 5 

I= 100, Gaussian noise 

= 0.01, ω = 0.1, σ  = 1 
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(a) 

 

(b) 

Figure 3: Actual Trapping Efficiency Vs Predicted Trapping Efficiency for training (a) and testing (b) data 

Table 5: Performance of GP and SGP models 

Approaches 

Training data set Testing data set 

C.C. R.M.S.E. M.A.E C.C. R.M.S.E. M.A.E 

GP_PUK 0.9984 0.8485 0.1221 0.9119 10.3658 8.7386 

GP_RBF 0.9920 1.8988 1.3222 0.9744 9.5877 7.4429 

SGP_PUK 0.9984 0.8485 0.1200 0.9119 10.3656 8.7385 

SGP_RBF 0.9984 0.8485 0.1200 0.9774 9.2487 7.1926 

SVM_PUK 0.9981 0.9174 0.1873 0.9106 10.3500 8.7513 

SVM_RBF 0.9428 5.3212 2.7416 0.8673 10.6227 8.7948 

SSVM_PUK 0.9982 0.9118 0.1292 0.9103 10.3537 8.7501 

SSVM_RBF 0.9680 3.8167 1.7091 0.7189 12.7934 11.2689 
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Developing the SVM regression-based models (C,γ,σ  and 

ω) is similar to developing the GP model. The models are 

developed with the help of two kernel functions (PUK and 

RBF). The models are compared with both kernel functions 

(PUK and RBF) and duringcomparison, noise(C) is 

remained constant. The primary parameters are presented in 

Table 6. During the SVM and SSVM models development 

(Table 5), it has been observed that PUK kernel has a better 

workability as compared to RBF kernel function. To check 

the superiority of SVM and SSVM models at every phase of 

progress (training and testing) Figure 3 is presented. The 

correctness of the models is evaluated with the error indices 

evaluated at every stage of training and testing (Table 5). 

Comparison of SVM and SSVM models suggest that 

stochastic approach reduce the performance of SVM 

models. SVM_PUK model works better than the other SVM 

and SSVM models.  The CC values of RBF kernel function 

based on SVM model are observedas 0.9981 and 0.9106 for 

training and testing, respectively. Moreover, the evaluating 

Figure 3 indicates that the SVM model with PUK kernel 

Table 6. User-defined parameters used with SVM and SSVM 

Approaches Radial basis kernel Pearson VII kernel 

SVM C = 2, γ = 5 C = 2, ω = 0.1, σ  = 1 

Stochastic SVM (SSVM) I= 100, C = 2, γ = 5 I= 100, C = 2, ω = 0.1, σ  = 1 

 

 

(a) 

 

(b) 

Figure 4: Performance of SVM and SSVM models for training (a) and testing (b) data 
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function is the best fit relative to other SVM models for the 

estimation of trapping efficiency of sediments by vortex 

tube ejector.  

Comparison of Models 

Assessing the capabilities of soft computing based models, 

it is analyzed that RBF kernel function based Stochastic GP 

model worksbetteras compared to other models. RBF kernel 

function works better than PUK kernel function in GP and 

SGP based models. In the comparison of SVM and GP 

models, Table 5 indicates that the GP model works better 

than SVM based model. Single factor ANOVA indicates by 

their results (Table 7) that f-critical has more value than F-

values and the outcomes of P-values suggest that the 

difference in estimated values using soft computing 

approaches and actual values is not significant (g-value > 

0.05). Based on the modelling results observed with the 

current data set, SGP_RBF is the most appropriate model to 

estimate the trapping capacity of the vortex tube silt ejector. 

Sensitivity Analysis: 

The most valuable parameters to estimate the trapping 

capability provided by vortex tube ejector SGP_RBF are 

found out by a simple method. This method conveys the 

sensitivity of every parameter on the model performance in 

the estimation of trapping capacityof sediments by vortex 

tube ejector. All the input parameters shown in Table 1 are 

considered as inputs of SGP_RBF based models, and then 

one by one each input variable is removed and the model 

with the same structure is developed. To test the sensitivity, 

the original model is implemented as described in the 

section of results of SGP_RBF. Dataset is separated into 

two parts for training and testing. The contribution of each 

input parameter in effecting the performance of vortex tube 

is examined using the performance indices: CC and RMSE. 

Depending on the degree of change in performance, the 

effect of each parameter is examined. The outcomes of the 

sensitivity analysis of SGP_RBF are shown in Table 8. As 

seen in Table8, the deficiency of the sediment size (S) and 

extraction ratio (R) reduced the accuracy of the estimation 

models, so it is detected that these two parameters are the 

most significant parameters for estimation of the trapping 

capability of vortex tube silt ejector. 

CONCLUSION 

The vortex tube sediment ejection device is useful in 

handling sediments moving near the bottom of the canal and 

presents aneconomical and viable solution in controlling 

sediment entry into the canal. Sediments laden water enters 

into the vortex device through a longitudinal slit provided 

along its top edge normal to the flow and trapped sediments 

from vortex tube are evacuated through the escape channel, 

where the channel may be linked to the river downstream of 

diversion works. The trapping efficiency results yielded 

from the experimental study with these ejection devices are 

used to develop models based on machine learning 

approaches. To relate trapping efficiency with input 

parameters viz. sediment size (S), sediment concentration 

(C), slit to diameter ratio (t/d) and extraction ratio (R), soft 

computing methods: SVM regression and GP regression 

with RBF and PUK as kernel functions are used. Stochastic 

gradient boosting is also applied with both the regression 

techniques (SVM and GP) andan inter-comparison of the 

modeling results is made. The application of these 

techniques suggests stochastic GP regression approach with 

RBF kernel function works as the best modeling approach 

in approximating the trapping capacity of vortex tubedevice 

relative to other regression approaches. ANOVA results 

Table 7. Results of single factor ANOVA 

Approaches F P-value F crit 

Difference in actual and 

estimated values 

GP_PUK 0.769244 0.382895 3.951882 Insignificant 

GP_RBF 0.504992 0.479238 3.951882 Insignificant 

SGP_PUK 0.769307 0.382875 3.951882 Insignificant 

SGP_RBF 0.239447 0.625852 3.951882 Insignificant 

SVM_PUK 0.671863 0.414669 3.951882 Insignificant 

SVM_RBF 0.183113 0.669781 3.951882 Insignificant 

SSVM_PUK 0.689 0.408803 3.951882 Insignificant 

SSVM_RBF 3.890779 0.051765 3.951882 Insignificant 

Table 8: Sensitivity investigation using SGP_RBF 

Input combination Input variable eliminated SGP_RBF 

Coefficient of 

correlation 

Root mean square error 

(%) 

S, C, t/d, R  0.9774 9.2487 

C, t/d, R S -0.4869 143.9305 

S, t/d, R C 0.9967 3.4198 

S,C, R t/d 0.9334 9.9547 

S,C, t/d R 0.4007 14.9663 
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with these approaches suggest the insignificant difference 

between all the applied regression approaches in predicting 

the trapping efficiency. 
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