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INTRODUCTION  

Groundwater is regarded to be one of the most reliable 

water supply sources for meeting the demands of water for 

various sectors in India including manufacturing, industries, 

agriculture, mining, and municipal water supply. It can also 

be regarded as a vital source in terms of clean drinking 

water in the country. However, on current trends, it is 

estimated that 60 percent of groundwater sources will be in 

a critical state of degradation within the next twenty years 

and thus have serious implications for the sustainability of 

agriculture, long-term food security, livelihoods, and 

economic growth. As groundwater resources are more 

intensively used, there is an increasing need for monitoring 

and modeling of groundwater systems. One of the most 

important and critical hydrological variables is the 

groundwater level, which is therefore monitored and 

predicted frequently at different locations and at frequent 

time intervals. Accurate prediction of the groundwater level 

helps a water engineer in developing better strategies to 

reduce the effects of various factors leading to the 

progressive decline of groundwater levels and thus it assists 

in the better sustainable management of groundwater 

sources. Thus, to assess the factors governing the rapid 

decline of groundwater levels, modeling groundwater 

resources can help a water engineer in achieving the 

objective in a better way. 

Almost all the groundwater flow and available transport 

models solve the relevant partial differential equation by the 

finite element method. These modeling methods are very 

much data and labour intensive and costly. In the recent 

past, intelligent technique based ANN models is being 

applied intensively to gain insight into the hydrological 

processes due to their better performance over the 

traditional modeling techniques such as empirical models, 

statistical models (autoregressive, autoregressive moving 

average models), and as an alternative to the physical-based 

models.  

ANNs also treated as Universal approximators are an 

alternative modeling and simulation tool, greatly suited to 

dynamic non-linear system modeling. Another attractive 

featureof ANNs is that they often do not require explicit 

characterization and quantification of physical assumptions 

like traditional physical-based numerical models. ANN 

models also include some drawbacks when handled with a 

non-stationary signal of a hydrologic process that involves 

seasonalities that vary from a single day to several decades. 
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ABSTRACT 

The use of Aquifers as a source of water supply is increasing on a global scale, leading to over-exploitation of available groundwater blocks. 
Thus, there is an increasing demand for checking the groundwater levels for better and sustainable management of groundwater resources. 
To acquire knowledge about the factors affecting the entire groundwater system, one should know the important variables and how they vary 
over time. It is well known that the groundwater head is considered to be one of the most essential hydrological variables and hence, it is 
monitored and predicted frequently at different locations and at frequent time intervals. Particularly, the groundwater prediction in hard 
rock areas is a complex task with the use of physically-based models as compared to the data-driven models. Therefore, in this study, an 
attempt has been made to verify the adequacy as well as the efficacy of the Artificial Neural Network model (ANN) and Wavelet-ANN 
conjunction (WANN) models in the prediction of groundwater levels in the Ur River watershed in Tikamgarh district of Madhya Pradesh, 
India. Although the Ur river basin having mainly granite type of aquifer, the obtained results reveal that the WANN and ANN models can be 
used to predict the groundwater levels in this watershed. The application of the ANN model in the groundwater prediction gives a higher 
estimate of the RMSE values during calibration and validation as compared to those obtained with the application of the WANN model for 
each one of the observation wells. Further, the WANN model is capable to provide groundwater level prediction with higher efficiency as 
reflected by higher R2 values during calibration and validation as compared to the ANN model which indicates a substantial improvement in 
the model performance. Therefore, it can be concluded that the WANN model provides a significantly accurate prediction of groundwater 
levels as compared to the results of the ANN model. Besides, the comparison of the scatter plots of time series during calibration and 
validation indicates that the values of water level depth estimated by the WANN model are more precise than those estimated by the ANN. 
Thus, this paper reveals the significant features of ANN models for forecasting groundwater levels in hard rock aquifer and their 
performance enhancement with wavelet theory. 
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Therefore, in such a situation pre-processing of time and 

space data may be an effective approach to overcome the 

drawbacks. The effectiveness of the wavelet transform is 

disintegrating non-stationary time series into sub-series at 

different scales (levels) is helpful for a betterunderstanding 

of the process. Therefore, the combination of ANN with 

wavelet transform as a hybrid wavelet-ANN (WANN) 

model that can explain simultaneously spectral and 

temporal information of the signal creates an effective 

implement for the prediction of hydrological processes 

(Vahid et al., 2013). The wavelet transform of a function is 

the improvedversion of the Fourier transform. Fourier 

transform is a powerful tool for analyzing the components 

of a stationary signal. But it is failed for analyzing the non-

stationary signal whereaswavelet transform allows the 

components of a non-stationary signal to be analyzed hence 

any application using the Fourier transform can be 

formulated using wavelets to provide more accurately 

localized temporal and frequency information. The 

analyzing function in the wavelet transformation is called 

wavelet. It will adjust the time width of the frequencies in 

such a way that high frequency once will be broader. 

Wavelet transform is one of the best tools to determine low-

frequency areas and high-frequency areas. Mainly there are 

two approaches available in the wavelet theory. The integral 

transform approaches continuous-time and the multi-

resolution analysis MRA/ filter bank approach discrete 

time.  

In this analysis, the ANN model with feed-forward structure 

has been developed to predict groundwater level with 

antecedent rainfall, evapotranspiration, and groundwater 

level as the input vector. The data of maximum and 

minimum temperature, extraterrestrial radiation from 

January 2004 to December 2013 have been collected from 

the Tikamgarh observation station used to compute the 

evapotranspiration which has been fed to ANN as an input. 

The different discrete wavelet transformation has been 

performed to decompose the input vector to forecast the 

groundwater level. The efficiency of the ANN model with 

wavelet transformed WANN is compared with the 

performance of the ANN model with a real input vector.  

STUDY AREA AND DATA COLLECTION 

Study Area 

The performance of the proposed model is evaluated using 

the quarterly time series data which obtained using an 

average of daily rainfall and daily maximum, minimum, 

and mean temperature data; and quarterly measured average 

water table depth which is recorded for the Ur River 

watershed in the Tikmagarh district, situated in the northern 

part of the state of M.P., India. The Tikamgarh district 

encompasses a total area of 5048 km
2
 bounded in the north 

and west by the Jhansi and Lalitpur of Uttar Pradesh. The 

entire district comes under the Betwa sub-basin of the 

Ganga basin. For the entire Tikamgarh district, altitude 

ranges from 200 to 400 m above mean sea level. The hill 

ranges are made up of hard compact and resistant granite 

masses intruded by quartz reefs. The normal annual rainfall 

during the monsoon season is recorded to be 1057.1 mm. 

The temperature of the study area varies widely between 7
o 

C and 41.8
o 

C. The outlet location of the district is 25
o
40’ N 

and 78
o
26’ E. Tikmagarh district is divided into six blocks 

as Tikamgarh, Baldeogarh, Jatara, Palera, Niwari, Prithipur. 

Out of which Jatara is the biggest with an area 1008.60 km
2
 

while Niwari is the smallest with an area of 606 km
2
. The 

geographical area of the Ur river watershed is 990 km
2
. 

Some of the observation wells falling outside the Ur river 

watershed are also considered in the analysis. 

Geomorphological features are directly controlled by the 

geological formation and their structures. Soils of the entire 

study area fall into three categories Viz. black humus 

granitic and yellowish-grey colour with kankar soils 

derived due to disintegration and decomposition of the 

parent rock. The Location of the Ur river watershed is 

shown in Figure 1. 

 

Fig. 1 : Location of Ur River watershed 

Data collection 

All the meteorological variables and groundwater level data 

used in this research work is respectively obtained from 

IMD and Central Ground Water Board (CGWB), Bhopal, 

Madhya Pradesh by NIH, Roorkee (Uttarakhand). The data 

consists of daily precipitation (mm), daily maximum, 

minimum, and mean air temperature (
o
C) data, and 

quarterly average groundwater level (mbgl) data. This study 

uses the groundwater level data for eight observation wells 

observed for ten years (from January 2004 to December 

2013). As shown in Figure 2, the selected observation wells 

are widely distributed over the study area.  

The evapotranspiration data used in this research work is 

calculated using a Hargreaves Temperature Model. This 

model is applied for the present study area due to the non-

availability of sunshine hour data. The Hargreaves 

temperature equation is one of the simplest and most 

accurate empirical equations used to estimate 

evapotranspiration (ETo) in mm/day, which is expressed as. 

oET = ( )8.170023.0 +meana TR TT minmax −  (1) 
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Here, 
oET  = evapotranspiration in mm/day, 

meanT , 
maxT , 

minT = mean, maximum, and minimum air temperatures in 

(
o
C), respectively and 

aR = extraterrestrial radiation in 

(mm/day) (Bhabagrahi et al. 2012). 

Fig. 2: Geographical Locations of the observation wells 

METHODOLOGY 

Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are inspired by the 

research processes that take place in biological systems. It 

can be regarded as an information-processing construct 

composed of several parallel interconnected processing 

elements known as simple nodes, analogous to neurons in 

the brain. An artificial neuron is a computational model 

inspired by natural neurons. Each node can be regarded as 

computational units, combines several inputs from the 

external environment, and process them (such as summing 

the inputs) to produce an output, which is then transmitted 

to many different locations, including other nodes (this 

node might contain another network). With the help of 

these processing nodes, a neural network can be used to 

predict future values of possibly noisy multivariate time-

series based on past histories. The objective of the neural 

network is to transform the inputs into meaningful outputs. 

A neural network is characterized by its architecture that 

represents the pattern of connection between nodes, its 

method of determining the connection weights, and the 

activation function (Fausett, 1994). The prime goal beside 

the ANN model is to generalize a simple relationship of the 

form (Nayak et al., 2006): 

mY = ( )X nf                   (2) 

where, X n  is an n-dimensional input vector consisting of 

variables 1x … ix ,…, nx ; while  
mY  is an m-dimensional 

output vector consisting of the resulting variables of interest 

1y … iy ,…., my . In ground-water level forecasting, ix  

may represent precipitation, temperature, and groundwater 

level values at different antecedent time lags, and the value 

of iy  is generally the groundwater level for a subsequent 

period at a specific well (Nayak et al., 2006). 

Feed forward neural networks (FNNs) 

Feed forward neural networks (FNNs) means that all the 

interconnections of the nodes between the layer propagate 

forward to the next layer. In the current proposed study, the 

activation function used for calculation is a sigmoid logistic 

function, whose slope is confined in the interval range [-1, 

1]. Each node is a simple processing element that responds 

to the weighted inputs it receives from other nodes. The 

receiving node sums the weighted signals from all nodes to 

which it is connected to the preceding layer. The net input 

jx to node j is the weighted sum of all the incoming 

signals: 

Net_input = 
jx = ∑ jij yw                                               (3) 

Here, 
jx =net input coming to node j. 

ijw = weight between node i and node j. 

jy = activation function at node j. 

The activation function, 
jy  which is a nonlinear function 

of its net-input, is described by the sigmoid logistic function 

using the following equation. 

jy  = 
( )

jx−+ exp1

1
                      (4)                                          

Since the advent of the error backpropagation learning 

algorithm, Feedforward neural networks (FNNs) have been 

applied successfully in many different problems. This 

network architecture and the corresponding learning 

algorithm can be viewed as a generalization of the popular 

least-mean-square (LMS) algorithm (Haykin, 1999). In this 

type of network, the data flow through the network in one 

direction from the input layer to the output layer through the 

hidden layer(s). Each output value is based solely on the 

current sets of inputs. In most networks, the nodes of one 

layer are fully connected to the nodes in the next layer; 

however, this is not a requirement of feed-forward 

networks. Figure 3 shows a typical feed-forward neural 

network (Adamowski, 2007) with four input neurons, one 

hidden layer with four nodes, and one output node. The 

input signal propagates through the network in a forward 

direction, layer by layer. The advantage is that they are easy 

to handle, and can approximate any input/output map, as 

established by Hornik et al. (1989). The one key 

disadvantage is that they train slowly, and requires lots of 

training data. 

  



 

 

Fig. 3: A Feedforward Artificial Neural Network 

Architecture (Adamoswki, 2007).

WAVELET ANALYSIS 

Wavelet transform (WT) analysis, developed 

two decades in the mathematics community, appears to be a 

more effective tool than the Fourier transform (FT) and 

short-time Fourier transform in analyzing non

time series. Wavelet analysis is the breaking up of a signal 

into shifted and scaled versions of the original (or mother) 

wavelet. Wavelet analysis can be used to decompose an 

observed time series (such as rainfall, evapotranspiration, 

and groundwater levels). In wavelet analysis, the use of a 

fully scalable modulated window solves the signal cutting 

problem. In this study, discrete wavelet transformation is 

used and it is described below. 

I. Discrete Wavelet Transform (DWT) 

The Discrete wavelet transform (DWT) allows one to 

reduce the computation time and it is considerably si

to implement than continuous wavelet transform (CWT). In 

one-dimensional DWT the signal is split into two parts, 

usually the high frequency and low-frequency part. This 

splitting is called decomposition. The signal is passed 

through a series of high pass filters to analyze the high 

frequencies, and it is passed through a series of low pass 

filters to analyze the low frequencies. 

y = ( )gx ∗ [ ]n = [ ] [ ]∑
∞

−∞=
−

k
kngkx     

The DWT of signal x is calculated by passing it through a 

series of filters. First, the samples are passed through a low 

pass filter with impulse response ‘g’ resulting in a 

convolution of the two. 

[ ]ny
low

= [ ] [ ]∑
∞

−∞=
−

k
kngkx 2     

[ ]ny
high

= [ ] [ ]∑
∞

−∞=
−

k
knhkx 2

   

The time series after wavelet decomposition allows one to 

have a look at the signal frequency at different scales. The 

discrete wavelet transformallows reducing computation 

time than CWT. High pass and low pass filters of different

cutoff frequencies are used to separate the signal at different 

scales. The scale ischanged by upscaling and downscaling 
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is calculated by passing it through a 

series of filters. First, the samples are passed through a low 

pass filter with impulse response ‘g’ resulting in a 

 (6)                                                    

 
(7) 

The time series after wavelet decomposition allows one to 

have a look at the signal frequency at different scales. The 

mallows reducing computation 

time than CWT. High pass and low pass filters of different 

cutoff frequencies are used to separate the signal at different 

scales. The scale ischanged by upscaling and downscaling 

operations (Cannas et al. 2005). In this study,

and Daubechies wavelets are used to decompose the input 

signal time series. 

II. Harr Wavelets 

The Haar wavelet operates on data by calculating the sums 

and differences of adjacent elements. The Haar wavelet 

operates first on adjacent horizontal e

adjacent vertical elements. After each transform is 

performed the size of the square which contains the most 

important information is reduced by a factor of 4. The next 

step in the image compression process is quantization. In 

Haar wavelet, the basics functions are scaled and translated 

versions of a “mother wavelet”

transform has many advantages such as it is conceptually 

simple, fast, memory-efficient since it can be calculated in 

place without a temporary array and it is exactly reversible 

without the edge effects that are pro intimate connections 

with the theory of fractals. The haar wavelets used in this 

study are shown in Figure 4. 

Fig. 4: Type of Harr wavelet used in this study.

III. Daubechies Wavelets 

The Daubechies wavelets consist of a family of orthogonal 

wavelets defining a discrete wavelet transform and 

characterized by a maximal number of vanishing moments 

for some given support. With each wavelet type of this 

class, there is a scaling function (also called father wavelet) 

that generates an orthogonal multi

Daubechies wavelets have surprising features

intimate connections with the theory of fractals. This 

wavelet type has balanced frequency responses but non

linear phase responses. Figure 5 shows the different types of 

Daubechies wavelets used for this study. Decomposed 

signals using these wavelets are used as inputs for the 

WANN model. In this research, input data are split using 

haar and Daubechies wavelets t

signals. 

Fig. 5: Type of Daubechies wavelet used in this study.
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operations (Cannas et al. 2005). In this study, Haar wavelet 

and Daubechies wavelets are used to decompose the input 

The Haar wavelet operates on data by calculating the sums 

and differences of adjacent elements. The Haar wavelet 

operates first on adjacent horizontal elements and then on 

adjacent vertical elements. After each transform is 

performed the size of the square which contains the most 

important information is reduced by a factor of 4. The next 

step in the image compression process is quantization. In 

let, the basics functions are scaled and translated 

ersions of a “mother wavelet” ( )tϕ . The Haar wavelet 

transform has many advantages such as it is conceptually 

efficient since it can be calculated in 

temporary array and it is exactly reversible 

without the edge effects that are pro intimate connections 

with the theory of fractals. The haar wavelets used in this 

Type of Harr wavelet used in this study. 

The Daubechies wavelets consist of a family of orthogonal 

wavelets defining a discrete wavelet transform and 

characterized by a maximal number of vanishing moments 

for some given support. With each wavelet type of this 

tion (also called father wavelet) 

that generates an orthogonal multi-resolution analysis. The 

Daubechies wavelets have surprising features-suchas 

intimate connections with the theory of fractals. This 

wavelet type has balanced frequency responses but non-

inear phase responses. Figure 5 shows the different types of 

Daubechies wavelets used for this study. Decomposed 

signals using these wavelets are used as inputs for the 

WANN model. In this research, input data are split using 

haar and Daubechies wavelets to analyze non-stationary 

of Daubechies wavelet used in this study. 
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Training with Bayesian Regularization Algorithm 

The next step was to determine the best values of all the 

weights, called training the ANN. In the so-called 

supervised learning mode, the actual output of a neural 

network was compared to the desired output. Weights, 

which were randomly set to begin with, were then adjusted 

so that the next iteration produces a closer match between 

the desired and the actual output. The main objective of 

training/calibrating a neural network was to produce an 

output vector Y= ( y
1

, y
2

,…, y
p

) close as possible to the 

target vector X= ( 1x , x2 , …, xp ) before feeding to the 

ANN. In this process, weight matrices W and bias vectors V 

were determined by minimizing a predetermined error 

function as explained as follows: 

E= ( )∑∑ −
P P

t iyi
2

                                        (8) 

Here, it  is a component of the desired output T; y
i
 is the 

corresponding ANN output; p is the number of output 

nodes; and P is the number of training patterns. The training 

phase can consume a lot of time. It is considered complete 

when the artificial network reaches a user-defined 

performance level. At this level the network has achieved 

the desired statistical accuracy as it produces the required 

outputs for a given sequence of inputs. When no further 

learning is judged necessary, the resulting weights are 

typically fixed for the application. 

Bayesian regularization algorithm is used in this study in 

order to train the given network more efficiently. The 

Bayesian regularization is an algorithm that automatically 

sets optimum values for the parameters of the objective 

function. In the approach used, the weights and biases of the 

network are assumed to be random variables with specified 

distributions. In order to estimate regularization parameters, 

which are related to the unknown variances, statistical 

techniques are being used. The advantage of this algorithm 

is that whatever the size of the network, the function won’t 

be over-fitted. Bayesian regularization has been effectively 

used in literature (Anctil et al.; 2004; Coulibaly et al., 

2001a, Porter et al., 2000). The network geometry is 

generally highly problem oriented in order to get optimal 

network geometry trial and error procedure is adopted. The 

numbers of nodes in the input layer were decided based on 

the inputs to the model. The number of hidden neurons in 

the network, which is responsible for capturing the dynamic 

and complex relationship between various input and output 

variables, was identified by various trials. For each set of 

hidden neurons, the network was trained with input datasets 

in batch mode to minimize the mean square error at the 

output layer. 

Coupled wavelet and Artificial Neural Network (WANN) 

WANN models are ANN models that use, as inputs, sub-

series components (DWs), which are derived from the 

DWTs of the original time series data. The DWT was 

performed in this study because it requires less 

computational effort than the CWT. One of the advantages 

of the WANN method compared to the ANN method is its 

ability to identify data components in a time series such as 

irregular components with multi-level wavelet 

decomposition (Adamowski and Sun, 2010). 

Criteria for model performance evaluation of ANN model 

The whole data series was divided into two subsets based 

on the statistical properties of the time series such as mean 

and standard deviation. One of the subsets is used during 

calibration of the model and another subset is used for 

validation of the model outputs. Various performance 

criteria are used to assess model performance. Numerous 

researchers proposed that a perfect evaluation of model 

performance should include at least one ‘goodness-of-fit’ or 

relative error measure (e.g. coefficient of determination 

(R
2
)) and at least one absolute error measure (e.g. Root 

mean Square Error (RMSE) or Mean Absolute Error 

(MAE)) (Rajaee, 2011). In this proposed study various 

performance criteria viz. Coefficient of Efficiency (CE), 

Root Mean Square Error (RMSE), Explained Variance 

(EV), and Coefficient of Determination (R
2
) are used to 

assess model performance and its ability to make the precise 

prediction. Based on the standardization of residual 

variance with initial variance, the coefficient of efficiency 

can be used to compare the relative performance of the two 

approaches effectively. It is expressed as.   

CE=









−
ianceinitial

ianceresidual

var

var
1 =

( )
( ) 













∑ −

∑ −
−

=

=

n
j

n
j

yjy

jxjy

1

2

1

2

1     

                                                                                   (9)  

Chiew et al. (1993) classified the coefficient of efficiency 

into three categories viz. perfectly acceptable simulation 

(C.E. > 0.90), acceptable simulation (C.E. between 0.60 and 

0.90), and unacceptable simulation (C.E. < 0.60). 

RMSE indicates the discrepancy between the observed and 

calculated values. The lowest the RMSE, the more accurate 

the prediction is. It is expressed using the following 

equation. 

RMSE =
n

ianceresidualvar
=

( )
∑

−

=
n
j

n

x jy j
1

2

  

(10)                    

Explained Variance measures the proportion to which a 

mathematical model accounts for the variation (dispersion) 

of a given data set. It is given by equation  

  EV = 
( )
( ) 

















∑ −

∑ −

xy

yx

jj

jj

2

2

                                       (11)   

The Coefficient of Determination ( )R
2

 given by equation  
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R
2

 = 







−

SST

SSE
1  

SST = ( )∑ −
=

N

i

y jy j
1

2

 

 SSE = ( )∑ −
=

N

i

x jy j
1

2

     (12) 

Here, y
j
= Observed water table depth, x j = Predicted 

water table depth, N= Number of observations, y
j
= Mean 

of observed water table depth, x j  = Mean of predicted 

water table depth. SSR = Sum of regression, SSE = Sum of 
Square Error, and SST = Sum of the square total. The best 
fit between observed and calculated data, which is unlikely 
to occur, would have RMSE = 0 and R

2
 = 1. 

In this study, an attempt has been made to predict the 
groundwater level of the different observation wells located 
in the Ur river watershed in the Tikmagarh District, Madhya 
Pradesh India. An ANN model was developed with the 
historical data of rainfall, maximum, minimum, and mean 
temperature, and water table depth of different observation 
wells in this study area. The best trained ANN model with 
the input data is derived based on statistical analysis. The 
original time seriesis decomposed into sub-series using 
discrete wavelet transform and these decomposed signals 
were used as input to the WANN model. The input values 
of quarterly rainfall and evapotranspiration used in the 
ANN model development were kept the same for each one 
of the observation well, the prediction of groundwater levels 
for next month ahead is done for each one of the 
observation wells using past historic groundwater level data 
for the particular well. The best prediction model is selected 
by using the above mentioned various performance criteria 
parameters. 

MODEL DEVELOPMENT 

ANN Models 

Primarily, ANN models for groundwater level forecasting 
for each one of the observation well was developed using 
the computer program in MATLAB 2009b software. The 
significant input variables for the neural network were 
selected based on cross-correlation, autocorrelation, and 
partial autocorrelation techniques to avoid noisy and non-
correlated input variables for the modeling system. Three 
techniques applied in this research work have been listed 
below: 

� The auto-correlation coefficient (Salas et al., 1980) is 
expressed using an equation. 

r k = 

( )( )

( ) ( )











∑
−

=
∑
−

=
+−+−

−∑ − ++

−

=

kN

t

kN

t
x ktx ktxtxt

xxxx ktkt

kN

t
tt

1 1

22
2/1

1
    (13)        

Here, 
kr  is called the lag-k correlation coefficient, the serial 

correlation coefficient or the autocorrelation function 

(ACF), tx  is the time series for t = 1,.., N, 
ktx +

is the 

lagged time series for t = 1,….., N-k,
tx is the sample mean 

for t = 1, … , N, 
ktx +

is the sample mean for t = 1,…., N-k, 

N is the sample size.  

� The partial autocorrelation coefficient (Salas et al., 

1980) may be obtained recursively by the Durbins 

relations as expressed using an equation. 
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To determine the partial auto-correlation function from a 

sample series 1x  ,…, Nx , in equation (11) the values of the 

autoregression coefficient, ρ  are replaced by the values of 

the autocorrelation coefficient, r .  

� The cross-correlation coefficient (Salas et al., 1980) is 

expressed using an equation. 
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Here, r
ij
k  is the lag-k cross-correlation coefficient, x

i
t

)(  is 

the time series i, x
j

t
)(  is the time series values of series j, 

x
i

t
)(
 is the mean of the first N-k values of series i, and x

j
kt
)(

+  

is the mean of the last N-k values of series j. 

After selecting the significant input variables, it was 

required to normalize the time series data between the range 

0 and 1 before passing into neural networks. Since the 

sigmoidal function slope is considerably based on their 

proportion in the interval [-1, 1]. To prevent the saturation 

of the network, it is required to normalize them using a 

suitable technique before finalizing them for a neural 

network. In this study, empirical equation 16 is used to 

normalize the given data set: 

N i =
MinMax

MinR

ii

ii

−

−
          (16)                                    

Here, Ri  is the real value applied to neuron, i; N i  is the 



J. Indian Water Resour. Soc.,Vol. 41, No. 1, Jan., 2021 

 

34 
 

subsequent normalized value calculated for neuron i; Mini  

is the minimum value of all values applied to neuron i; 

Max i  is the maximum value of all values applied to 

neuron i. 

The next step was to determine the best values of all the 

weights, called training the ANN. The ANN models have 

been trained using the Bayesian regularization algorithm. 

For each one of the inputs from different observation wells, 

the whole time series data set is divided into sets for the 

training and validation of the ANN model to prevent the 

complexity of the network. The quarterly groundwater level 

data from January 2004 to December 2013 (40 months) 

have been considered for the development of the model. 

Out of 40 months datasets, the 32 month data set is 

available for analysis due to consideration of 8 month time 

lag for rainfall series. In 32 month datasets, 25 sets 

(78.125%) of data were used for calibration (training), 7 

sets(21.875%) of data were used for validation. These data 

sets were selected by the trial and error method. 

WANN Models 

Interpretation of time series simultaneously in both spectral 

and temporal terms helps ANN for better interpretation of 

the process. The wavelet transform was used to decompose 

rainfall and evapotranspiration time series using haar and 

Daubechies wavelets at different decomposition levels. The 

selection of mother wavelet for different input time-series 

signals was based on the performance of the model. The 

optimum level was obtained through a trial-error procedure. 

In order to have a comprehensive overview of the 

decomposition level, initially, the following formula was 

employed which gives a maximum level of decomposition 

(Nourani, 2008). 

L= int [log (N)]                (17) 

Here, L is the decomposition level and N is the number of 

time-series data. In this study N=32, thus L=3. This 

experimental equation was derived for fully autoregressive 

signals and only considering time-series length without 

paying attention to seasonal signatures of a hydrologic 

process (Nourani et al., 2008). Therefore, the other 

decomposition levels (i.e., 2, 3, and 4) were also examined, 

the decomposition level which led to better results via the 

presented modeling and was selected at the optimum 

decomposing level. 

Due to the proportional relationship between the amount of 

rainfall and evapotranspiration, these signals were supposed 

to have the same seasonality level and both time series were 

decomposed at the same level (i.e. level 2). Daubechies-2 

(db2) mother wavelets were applied to decompose both 

rainfall and evapotranspiration time series for this station 

because the db2 wavelet is similar to theevapotranspiration 

and rainfall signal so that it could capture the signal 

features, especially peak points, efficiently and led to 

comparatively good results.  

5. RESULTS 

The performance of the best ANN and best WANN models 

for the prediction of water level depth at Tikamgarh town 

during calibration and validation is presented in Figure 6 to 

9. The scatter plots demonstrate the potential ability of the 

developed ANN and WANN models for the prediction of 

water level depth. The performance of the best ANN and 

best WANN model in terms of observed and computed 

monthly water table depths of observation well during 

validation are presented in Figures 10 and 11 respectively. 

The results of the calibration and validation of the best 

ANN and best WANN models in terms of various statistical 

indices are presented in Table 1. 

     

  Fig. 6: Scatter plot for the result of the best ANN model           Fig. 7: Scatter Plot for the result of the best ANN model 

      for the Tikamgarh Town station during Calibration.                 for the Tikamgarh Town station during Validation. 
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From Table 1, it can be revealed that the coefficients of 

correlation with the use of the WANN model are higher 

during calibration as well as validation as compared to those 

with the ANN model. The RMSE values obtained with the 

ANN model, during calibration and validation are higher 

than those with the use of the WANN model. The model 

efficiency of the ANN model deteriorates during the 

validation. whereas the model efficiency of the WANN 

model is improved for both during validation. From these 

results, it appears that the WANN model performance is 

significantly better than the ANN model even though the 

times series data length is short. Also, the scatter plots of 

the best ANN and WANN for the predicted and observed 

groundwater levels during calibration and validation at 

Tikamgarh town as shown in Figs. 6-9 indicates that the 

ANN models underestimate the groundwater levels during 

calibration as well as during validation as compared to the 

observed levels. However, the WANN model is capable of 

predicting the groundwater level close to that of the 

observed values. This observation can also be verified by 

the examination of Figs. 10 and 11 which shows that the 

WANN model predicts the groundwater levels at the 

Tikamgarh town more satisfactorily than the ANN model. 

Thus, the WANN model can be considered as a more 

suitable model in predicting the fluctuations of the 

groundwater level as compared to the ANN model.  

           
Fig. 8: Scatter Plot for the result of the best WANN Fig. 9: Scatter Plot for the result of the best WANN 

model for the Tikamgarh Town station during  model for   the Tikamgarh Town station during 

Calibration.      Validation. 

           
Fig. 10: Observed and computed monthly water table Fig. 11: Observed and computed monthly water table 

depths by the best WANN model for the Tikamgarh depths by the best WANN model for the Tikamgarh 

Town station during Calibration.    Town station during Validation. 

 

Table 1.Comparison of results between ANN and WANN models for the Tikamgarh Town station. 

Station 

Name 
Models 

Calibration Validation 

CORR 
RMSE 

(m) 

EFF 

(%) 
CORR 

RMSE 

(m) 

EFF 

(%) 

 

Tikamgarh 

Town 

ANNGWL11 

(8-11-1) 
0.95 1.09 0.90 0.94 0.87 0.85 

WANNGWL11 

(8-11-1) 
0.96 0.98 0.92 0.99 0.49 0.95 
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Further to check the applicability of these two models at 

other observation wells, these models applied for the 

groundwater levels prediction at three different observation 

wells at Majna, Palera, and Nengawan. Note that the 

observation well at the Palera is having a shallow aquifer.  

The ANN and WANN models were developed for each one 

of the observation wells as per the procedures used for the 

development of models for the Tikamgarh town observation 

well. The input variables such as precipitation and 

evapotranspiration were kept the same for these three 

observation wells. The observed values of water level 

fluctuations in these observation wells and their comparison 

with the values computed by the ANN and WANN models 

during calibration and validation are shown in Fig. 16 to 

Fig.24. The scatter plots showing the observed groundwater 

levels and ANN and WANN models predicted levels at 

Majna, Palera (Shallow), and Nengawan during calibration 

and validation are shown in Figs 12-15, Figs. 17-20 and 

Figs. 22-23, respectively. Further, the performance criteria 

for these models are shown in Table 2, Table 3, and Table 4 

respectively. 

From these results, it can be concluded that the WANN 

model has a better performance in the prediction of 

groundwater levels at Majna, Palera, and Nengawan stations 

during calibration and validation as compared to the results 

by the ANN model. 

         

Fig. 12: Scatter plot for the result of the best ANN   Fig. 13: Scatter plot for the result of the best ANN 

model for the Majna station during Calibration.  model for the Majna station during Validation. 

       

Fig 14. Scatter plot for the result of the best WANN Fig 15. Scatter plot for the result of the best WANN 

model for the Majna station during Calibration  model for the Majna station during Validation 
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Fig. 16: Observed and computed monthly water    Fig. 17: Scatter plot for the result of the best ANN 

table by the best WANN model for the Majna   model for the Palera station during Calibration. 

station during Validation. 

       

Fig 18.Scatter plot for the result of the best ANN   Fig. 19 : Scatter plot for the result of the best WANN 

model for the Palera station during Validation.     model for the Majna station during Calibration. 

      

Fig. 20: Scatter plot for the result of the best WANN    Fig. 21: Observed and computed monthly water table 

model for the Majna station during Validation     depths by the best WANN model for the Palera 

station during Validation. 
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CONCLUSIONS  

ANN model based WANN models have been presented for 

predicting the groundwater levels in the Ur river watershed 

in the Tikamgarh district of Madhya Pradesh. This 

watershed area mainly consists of the granite type of poor 

aquifers and hence the application of a physically-based 

groundwater level prediction model seems to be a 

challenging task. Therefore, this study intended to 

investigate the applicability of the ANN and WANN model 

in the prediction of groundwater levels in the Ur river 

watershed. In the development of these models, the daily 

rainfall and daily maximum, minimum, and mean 

temperature data are converted into the quarterly data. 

Further, the quarterly rainfall, temperature (mean, 

maximum and minimum), and quarterly measured 

groundwater level data recorded from January 2004 to 

December 2013 for 10 years were used for the development 

         

Fig. 22: Scatter plot for the result of the best ANN      Fig. 23: Scatter plot for the result of the best WANN 

     model for the Nengawan station during Validation             model for the Nengawan station during Validation. 
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Fig. 24: Observed and Computed monthly water 

table depths by the Best WANN model for the 

Nengawan station during Validation. 
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Table 2: Comparison of results between ANN and WANN model for the Majna station. 

Station 

Name 
Models 

Calibration Validation 

CORR 
RMSE 

(m) 

EFF 

(%) 
CORR 

RMSE 

(m) 

EFF 

(%) 

Majna 
ANNGWL3  (8-3-1) 0.90 2.16 0.81 0.93 1.50 0.86 

WANNGWL3  (8-3-1) 0.95 1.47 0.91 0.99 0.92 0.95 

Table 3: Comparison of results between ANN and WANN models For the Palera Station 

 

Station 

Name 

Models 

Calibration Validation 

CORR 
RMSE 

(m) 

EFF 

(%) 
CORR 

RMSE 

(m) 

EFF 

(%) 

Palera 
ANNGWL5 (11-5-1) 0.96 0.60 0.92 0.90 0.64 0.78 

WANNGWL5 (1157-1) 0.97 0.51 0.94 0.96 0.49 0.87 

Table 4: Comparison of results between ANN and WANN models for the  Nengawan station. 

 

Station 

Name 

 

Models 

 

Calibration 

 

Validation 

CORR 
RMSE 

(m) 

EFF 

(%) 
CORR 

RMSE 

(m) 

EFF 

(%) 

Nengawan 
ANNGWL7 (9-7-1) 0.93 1.32 0.87 0.91 1.16 0.82 

WANNGWL7 (9-7-1) 0.93 1.31 0.87 0.94 1.04 0.86 
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of both of these models. The evapotranspiration is 

calculated using the Hargreaves temperature model. The 

statistical parameters such as ACF, PACF, and CCF have 

been used for the selection of input vector. The feed-

forward neural network architecture was trained with a 

Bayesian regularization algorithm having input, hidden, and 

output nodes. The number of neurons in the hidden layer is 

optimized to 15 by trial and error, network parameters are 

also optimized by the trial and error method. Out of 40 

months datasets, 32 month data set is available for analysis 

due to consideration of 8 month time lag for rainfall series. 

For each one of the inputs, out of 32 months datasets, 25 

sets (78.125%) of data is used for training, 7 sets (21.875%) 

of data is used for validation. 

Similarly, the WANN model is developed by using 

decomposed signals of rainfall and evapotranspiration time 

series by DWT as input data in the ANN model. The 

optimum level of decomposition was decided based on 

model performance. The selection of mother wavelet type 

was also based on the model performance which was 

investigated using different types of mother wavelets viz. 

db2, db3, db4, haar3, haar4, etc. However, previous studies 

were done by B. Krishna et al. and Jan Adamowski et al. 

[23] who argued that to develop the WANN model, the 

decomposition level was selected based on the empirical 

formula given by Eq. (17) were not found appropriate. The 

performance criteria such as coefficient of correlation, root 

mean squared error (RMSE), and model efficiency have 

been used to evaluate the performance of both the model. 

The analysis of the predicted groundwater levels during 

calibration and validation by the  ANN and WANN models 

for three ground observation wells indicates that the ANN 

and WANN models are applicable for the prediction of 

groundwater levels in the hard rock area particularly in the 

Ur River watershed. Further, the use of the WANN model 

resulted in significant improvement in groundwater levels 

prediction closely with the observed groundwater levels 

data as compared to the ANN models at all the four 

considered groundwater observation wells. Based on this 

study it can be envisaged that the WANN model is most 

suitable for prediction in the hard rock areas. 
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