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INTRODUCTION  

General Circulation Models (GCMs) are widely used to 

assessclimate change and its potential impacts at different 

temporal and spatial scales, but their coarse spatial 

resolution (100-250 km)  is inadequate for their application 

at a local scale due to lack of spatial details[1]–[3]. The 

Regional Climate Models (RCMs) are often used to down-

scale the large scale climate information from GCMs to a 

local scale; however, RCMs are complicated, 

computationally intensive and time-consuming. To avoid 

this complexity, in practice, spatial interpolationsareapplied 

[4]–[7] to re-grid the coarser resolution climate model data 

onto a finer resolution. However, in most cases,spatial 

interpolation methods are randomly used. For instance, 

bilinear interpolation has been used in many studies [8]–

[10] but the reason behind selecting the bilinear method was 

not well explained. Climate variables such as precipitation 

shows high spatial variability in frequency and magnitude, 

where, understanding the spatial distribution of precipitation 

at different spatial scales is important for water resource 

management, hydrological modelling, agricultural 

industries and urban planning. Therefore, the selection of an 

appropriate spatial interpolation method is important to 

provide the accurate spatial distribution of the precipitation 

when transforming from a relatively coarser to a finer 

spatial resolution. 

Various spatial interpolation techniques ranging from 

simple to complex have already been used for remapping 

data to a desired finer resolution [5], [11]. For interpolating 

the rain gauge station data at small and medium scale 

catchments (or basins), Nearest Neighbour (NN), Inverse 

Distance Weighting (IDW), Thiessen polygons, Spline and 

different forms of Kriging are frequently used [12]. Many 

studies have compared the performance of these spatial 

interpolation methods for the rainfall data at different 

temporal and spatial scale. For instance, da Silva et al. 

[13]compared seven interpolation methods for the monthly 

precipitation over Pernambuco, Brazil and reported trend 

surface analysis to be the best followed by natural NN, IDW 

and Krigging. Yang et al. [4] compared four methods with 

the model generated daily precipitation data and reported 

that IDW performed slightly better than Spline, Kriging and 

ANUDEM[14]. Dirks et al. [15] didn’t find any advantage 

of using Kriging over IDW, Thiessen or areal-mean while 

gridding rainfall data from 13 rain gauge stations on 

Norfolk Island. Consequently, Wu et al.[16] evaluated a 

number of spatial interpolation methods for mapping the 

bathymetry of lowermost Mississippi River, which includes 

IDW, Ordinary Kriging (OK), Universal Kriging (UK), 

Radial Basis Function (RBF), local Polynomial and 

anisotropic form of Elliptical IDW, and OK and found that 

both the RBF and anisotropic form of OK performed best. 

Zhang et al.[17], compared OK, co-Kriging with elevation 

as covariate (Cok-elevation) and co-Kriging with 

precipitation data from tropical rainfall measuring mission 

to interpolate precipitation data from 39 rain gauge stations 

in the Tibetan Plateau and reported that Cok-TRMM is 

more effective than the other two, which was also 

confirmed by Foehn et al. [18]. Note, the performance of 

the interpolation methods depends on several factors, in 
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particular, temporal and spatial resolution of the considered 

data and the study region. Degré et al.[19] reviewed a 

number of spatial interpolation methods from different 

perspective and concluded that, for annual and monthly 

rainfall, geo-statistical interpolation methods (different 

mood of Kriging) seem preferable to the deterministic 

methods (Thiessen, NN, IDW etc.), but for the daily 

rainfall, geo-statistical methods and IDW can be a better 

option. Most of the aforementioned studies interpolated the 

rain gauge station data and evaluated the interpolation 

methods at selected points within the study areaby using 

error metrics; root mean squared error (RMSE), mean 

absolute error, mean standard errors. To get an idea of 

which method produces better interpolation at the 

catchment level, it is essential to apply the methods for the 

entire study area in addition to a single point. Wagner et al. 

[20]also suggested that evaluation of the interpolation 

methods should include the spatial distribution over the 

study area for precipitation data. Therefore the objective of 

this study is to evaluate the different interpolation methods 

for the application of GCM data in a catchment level. This 

study will consider a single point measure as well as entire 

catchment for spatial distribution of precipitation data. In 

addition, this study also assesses the performance of 

interpolation methods due to the change in spatial resolution 

of the selected data sets. 

MATERIALS AND METHODS 

Data Collection 

CMIP5 experiments (e.g., decadal) provide global climate 

data for a wide range of climate variables generated from a 

number of climate models. The decadal simulation, once 

initialized, generate climate data for ten years and longer in 

some cases[21]. Monthly precipitation data from three 

GCMs; MIROC4h, EC-EARTH and MPI-ESM-LR was 

downloaded from the CMIP5 data portal (https://esgf-

node.llnl.gov/projects/cmip5/). Details of the models and 

the data are given in Table 1. 

The gridded monthly precipitation data with a spatial 

resolution of 0.05 degree was collected from the Australian 

Bureau of Meteorology (BoM). The gridded observed data 

of BoM were produced by the Australian Water Availability 

Project (AWAP)[22]. 

Data processing 

Firstly, the model datasets were subset for the Australian 

region, thereafter, all the available ensembles (i.e.,multiple 

runs of the same model with slightly perturbed initial 

conditions) of the individual models are averaged to 

produce a single dataset for each model. These datasets 

were then interpolated from their native grids onto 0.05 x 

0.05 degree matching with the grid of the observed dataset. 

Finally, the interpolated data were subset for the selected 

Brisbane catchment (i.e., longitude from 151.70 E to 

153.150 E and latitude from 26.50 S to 28.150 S) in 

Queensland, Australia. 

Interpolation methods  

In this study, eight different interpolation methods were 

evaluated. The six methods; Bi-linear (BiLIN), Nearest 

Neighbor (NN), Distance Weighted Average (DWA), First-

order conservative (FOC), Second Order conservative 

(SOC) and Bi-Cubic (BIC) interpolation were performed by 

the Climate Data Operator (CDO)[23] tool, whilst Linear 

(LIN) and Inverse-Distance Weighted Average (IDW) were 

performed by the Matplotlib and Scipy libraries in Python. 

It is worth noting that DWA is also an IDW method, where 

four nearest neighbour points (by default) are used, whilst 

the Scipy based IDW method, only three nearest neighbour 

points are considered. 

Linear interpolation is the concatenation of linear 

interpolants between each pair of data points. But the 

“LinearTriInterpolator” from Matplotlib performs linear 

interpolation on a triangular grid. Each triangle is 

represented by a plane so that interpolated values lie on that 

plane of the triangle containing the interpolants. For the 

Inverse-Distance Weighted Average, Scipy spatial 

algorithm described by Maneewongvatana and Mount [24] 

is used to locate the neighbouring points for a given set of 

points. 

CDO uses adapted interpolation methods from the SCRIP 

library [25]. SCRIP is a software package.It computes the 

addresses and weights for remapping and interpolating 

variables between grids on the spherical coordinates. 

Initially,it was written for remapping the fields to desired 

Table 1: Model used in this study 

Modelling Centre (or Group) 
Model Name 

 

(Atmospheric 

Resolutions in degree) 
Time span 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

MIROC4h 

 
(0.5625 X 0.5616) 10 Year;  

From January 1991 to 

December 2000 
Meteorological Research Institute EC-EARTH (1.125 X  1.1215) 

Max Planck Institute for Meteorology MPI-ESM-LR (1.875 X  1.865) 

 

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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grids in a coupled climate model but can also be used for 

other applications. 

Performance Assessment 

The observed dataset has 496 grid (5.0 km X 5.0 km) points 

within the Brisbane catchment, and the skill tests are 

performed at the grid point (latitude 27.50 S and longitude 

153.050 E) located closest to an AWS (Automated weather 

stations) rain gauge (the observed point at latitude 27.480 S 

and longitude 153.040 E) operated by the Bureau of 

Meteorology, Australia. To assess the performance, five 

skill tests: root mean squared error (RMSE), mean absolute 

error (MAE), correlation coefficient (CC), anomaly 

correlation coefficient (ACC) according to Wilks (2011) 

[26]and index of agreement (IA) suggested by Wilmot 

[27]were used.  

𝑅𝑀𝑆𝐸 =   
1

𝑁
 (𝐹𝑖 − 𝑂𝑖)

2

𝑁
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1
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2
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𝐹 and 𝑂present modelled (interpolated) and observed 

values respectively whilst 𝐹  , 𝑂 present their annual mean, 

and C is the decadal mean of the observed (BoM) data. 

Additionally, Pearson correlation (Pr) and Kendall's tau 

(Kr) correlations are also calculated and compared. 

RESULTS AND ANALYSIS 

The monthly precipitation data from three CMIP5 models 

are evaluated against the observed data, and the results are 

presented in Table 2. These models with three different 

spatial resolutions were chosen (see Table 1) to assess the 

effect on skills of the interpolation methods due to the 

variations of atmospheric spatial resolution (before 

interpolation) of the interpolant dataset. The results for the 

interpolation methods aren’t significantly different, but to 

some extent,some of them are slightly better than others.  

Overall, DWA method has comparatively lower errors for 

all three selected models with varying values for the skill 

tests; CC, ACC, IA, Pr and Kr. However, the performance 

of the interpolation methods is sensitive to the choice of 

models; and the spatial resolution of the interpolant dataset. 

DWA has the lowest errors (RMSE and MAE) and IA, 

whereas LIN has the highest values for CC, ACC, Pr 

followed by DWA (see Table 2), whilst SOC and FOC 

performed poorly on all skill tests except IA.Overall, the 

DWA method has the lowest errors for all three models and 

outperforms all methods on all temporal skill for the 

MIROC4h model at a single grid point. With the change in 

spatial resolutions, the skill specifically CC, ACC, Pr, Kr 

and IA varied a little with little to no change in RMSE and 

MAE. Note, Table 2, presents temporal skills at the 

observed station only.  

These study also compared the spatial variations of these 

temporal skills over the entire catchment for all three 

models, but only IA (Fig. 1) and RMSE (Fig. 2) for the 

MIROC4h models are presented here. From the spatial 

comparison, it is evident that NN along with conservative 

methods found little better in CC, ACC (not shown) and 

RMSE whilst DWA outperforms other methods for IA. An 

overview of spatial comparison of all three models based on 

Table 2: Comparison of Interpolation Methods Based on Different Temporal Skills of Selected Modelsagainst Observed 

Monthly Precipitation at a single Gridpoint. Higher (Lower) the Skill (RMSE) Values will Present Higher the 

Performance of Interpolation Methods. For the sake of brevity, Pr and Kr are not presented here. 

Interp. MIROC4h EC-EARTH MPI-ESM-LR 

 
RMSE CC ACC IA RMSE CC ACC IA RMSE CC ACC IA 

BiLIN 80.991 0.368 0.354 0.539 79.377 0.437 0.362 0.458 77.432 0.338 0.306 0.414 

LIN 80.948 0.368 0.355 0.539 79.377 0.437 0.362 0.458 77.407 0.343 0.307 0.414 

NN 82.634 0.345 0.334 0.520 79.207 0.438 0.364 0.462 80.083 0.325 0.289 0.437 

IDW 80.998 0.366 0.353 0.536 79.221 0.438 0.364 0.461 77.994 0.334 0.301 0.423 

DWA 79.744 0.380 0.365 0.540 79.060 0.436 0.363 0.458 77.284 0.339 0.306 0.405 

FOC 82.303 0.350 0.338 0.525 79.204 0.438 0.364 0.462 80.100 0.325 0.289 0.437 

SOC 82.307 0.350 0.338 0.525 79.207 0.438 0.364 0.462 80.083 0.325 0.289 0.436 

BIC 81.414 0.362 0.349 0.536 79.480 0.438 0.363 0.458 78.085 0.332 0.300 0.424 
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the specified thresholds of individual skills is presented in 

Table 3. From this comparison, it is evident that NN, DWA 

and the conservative methods perform better than others 

with little variations in skills over model types where SOC 

found more consistent, followed by FOC in better 

performance than DWA and NN. 

DISCUSSION AND CONCLUSION 

This study compared different spatial interpolation methods 

at a catchment scale, where the temporal errors and skills 

were evaluated at an observed point within the catchment 

and spatial comparison of temporal skills for the whole 

catchment. Preliminary results show no significant 

 

Fig.1: Spatial comparison of Index of Agreement (IA) of different interpolation methods (MIROC4h) over the 

catchment. Labels on the right of each plot indicate more the brightest area higher the performance of the interpolation 

methods. 

 

Fig. 2: Comparison of the spatial variations of Root Mean Squared Error (RMSE) of different interpolation methods 

(MIROC4h) over the catchment. Labels on the right of each plot indicate more the brightest area higher the 

performance of the interpolation methods. 
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difference among the interpolation methods when compared 

at observed stations. This may be because of the interpolant 

datasets is regularly gridded as opposed to the irregularly 

distributed point rain gauge stations. For irregular datasets 

such as point rain gauge stations, the difference in skills for 

the interpolation methods may appear, even for IDW (k=3) 

and DWA (k=4), where the only difference between these 

two methods is the number of neighbouring points used for 

the interpolation. Upon comparison of the errors and skills 

at a grid point within the catchment, DWA was found to be 

better than other interpolation methods, also reported in 

other studies [4], [28], [29]. Note, Chen and Liu [28] and 

Hsieh et al.[29] used rainfall data from the rain gauge  

stations, whereas Yang et al. [4] used generated data, but all 

reported that IDW performs better. 

For the sake of brevity, when comparing temporal skill over 

the catchment, only RMSE, CC, ACC and IA are 

considered. For the spatial comparison, a specific threshold 

for skill values is set, and the number of grids covered for 

the thresholds are counted. The spatial comparison reveals 

that the conservative methods performed much better than 

the other five interpolation methods, with SOC 

outperforming FOC. Itappears that maintaining the spatial 

distribution of the precipitation by interpolating in a 

conservative manner is the main reason behind the better 

spatial skills of these conservative methods. In conservative 

methods, the precipitation flux is conserved when 

interpolated from the source grid onto an interpolated grid. 

The conservation of flux while interpolating spatially is 

important, especially for the discontinuous variable like 

precipitation and due to its high temporal and spatial 

variability. For instance, if few grid points have no 

precipitation while others have large values, then bilinear 

interpolation can make all points zero, including the large 

values as it uses four grid points nearest the 2-degree target 

grid point. In this case, conservative interpolation would be 

a good approach. During the spatial interpolation, it is 

presumed that an accurate approximation of the flux on a 

source grid leads to a more accurate remapping, as 

evidenced by the used of SOC. In the SOC method, the 

area-weighted distance from the source cell centroid is 

considered as the gradient of flux for the interpolated cell 

[30].  Jones [30] compared first and second-order 

conservative with the other different interpolation methods 

and found that conservative methods perform much better 

for the dataset on regular rectangular grid, where second-

order conservative shows an order-of-magnitude 

improvement over the first order. 

Wagner et al. [20] suggested that the spatial skills of the 

interpolation methods must be considered rather than the 

skill measured at points. Maintaining the spatial distribution 

is more important to assess climate variability at a local 

scale,especially for the precipitation. said the results 

revealed that the conservative methods would suit better for 

spatial interpolation of precipitation as they maintain the 

spatial distribution of the interpolated variables by 

conserving the flux. Furthermore, SOC may be the best 

option for the spatial interpolating the gridded precipitation 

dataset like those from the GCMs as found in this study. 

This finding is inline with the previous study[30], where the 

second-order conservative (SOC) method was found to be 

an appropriate choice for interpolating the gridded dataset. 

For the cross-validation, similar studies at other 

catchments/regions are recommended. 

Table 3: Number of Grids Covered by the Interpolation Methods for the Specific Thresholds of the Skills. Selected 

Models, Skills and corresponding thresholds are presented in the first, second and third row respectively. Higher the 

number in the respective columns presents better the performance of the interpolation methods over the catchment and 

vice versa.  

Interp. MIROC4h EC-EARTH MPI-ESM-LR 

 

RMSE CC ACC IA RMSE CC ACC IA RMSE CC ACC IA 

<=55 >=0.55 >=0.5 >=0.65 <=55 >=0.55 >=0.45 >=0.6 <=55 >=0.45 >=0.35 >=0.6 

BiLIN 47 5 11 102 22 9 0 5 20 3 8 87 

LIN 45 9 16 102 22 11 0 5 20 2 2 84 

NN 52 14 20 88 56 0 3 22 19 1 16 85 

IDW 50 6 12 92 19 0 0 3 19 3 2 79 

DWA 45 2 8 103 20 11 1 6 19 11 27 86 

FOC 52 14 21 88 56 0 3 21 19 1 15 85 

SOC 52 14 21 88 58 0 3 22 19 1 14 87 

BIC 51 11 19 112 23 12 0 5 17 3 5 97 
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