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INTRODUCTION 
 

The word ‘vulnerability’ is usually associated with natural 

hazards like flood, drought, and social hazards like poverty 

etc. The Intergovernmental Panel on Climate Change 

(IPCC, 1995), in its Second Assessment Report, defines 

vulnerability to climate change as “the extent to which 

climate change may damage or harm a system”. Chamber 

(1983) described that vulnerability has two sides. One is an 

external side of risks, shocks to which an individual or 

household is subjected to a hazard and an internal side 

which is defenselessness, meaning a lack of means to cope 

without damaging loss.  The vulnerability of a place on the 

earth surface to flood is a function of the region’s exposure 

to the hazard (natural event) and the anthropogenic 

activities carried out within the catchment area, which 

impedes the free flow of water (UNESCO, 2012). 

Vulnerability is often reflected in the condition of the 

economic system as well as the socioeconomic 

characteristics of the population living in that system 

(Patnaik and Narayanan, 2009). Water resource systems are 

vulnerable to floods due to three main factors; hazard, 

exposure, and adaptive capacity. Hazard may be defined as 

a physical manifestation of flood posing threat to life, 

health, property or environment. Exposure can be 

understood as the values that are present at the location 

where floods can occur. Adaptive capacity is the ability of 

an entity – a country, a community, or an individual – to 

take action to cope better with current or potential adverse 

conditions brought about by hazards. Area that have high 

exposure and low coping capabilities would have the 

highest risk from a given flood event and those with low 

exposure and high coping abilities would have the lowest 

risk. 

 

Many studies on quantitative assessment of vulnerability 

such as Schimmelpfennig and Yohe (1999), Pritchett et al. 

(2000), Downing et al. (2001), Moss et al. (2001), Kaly et 

al. (2002), and Luers et al. (2003) illustrated the composite 

index approach to measure vulnerability. For instance, Moss 

et al. (2000) in the Pacific Northwest Laboratory (PNL) 

used an index which is a composite of 16 variables selected 

from five sensitive sectors (settlement, food security, human 

health, ecosystem, and water) and three dimensions for 

coping capacity (economic, human resources, and 

environmental) to measure vulnerability to climate change 

for 38 countries. Roy and Thomas (2013) developed a 

methodology for the spatial vulnerability assessment of 

floods in the coastal regions of Bangladesh. Bahinipati 

(2014) adopted an integrated approach to assess 

vulnerability across the districts of Odisha, India and 

provided a better understanding of the adaptive capacity of 

households towards cyclone and flood. Ousmane et al. 

(2015) and Liu and Li (2015) also assessed the social 

vulnerability to flood in Medina Gounas. Kissi et al. (2015) 

carried out quantitative assessment of vulnerability to flood 

hazards in downstream area of Mono basin, south-eastern 

Togo of Yoto district. Letsie and Grab (2015) assessed 

social vulnerability of communities to natural hazards by 
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ABSTRACT 

Assessment of vulnerability of Arunachal Pradesh to floods was carried out using Unequal Weights Index Method. The weights were 

assigned using two methods: Hazard/ Exposure/Adaptive Capacity/Vulnerability (HEAV) Mathematical Framework based on Analytical 

Hierarchy Process (AHP) and Iyengar & Sudarshan’s method. UNDP’s Human Development Index (HDI) was used to normalize the 

indicators for hazard, exposure, and adaptive capacity based on the functional relationship with vulnerability. Further, the districts of 

Arunachal Pradesh were classified based on the vulnerability indices using probability density function. Regularized incomplete beta 

function was used for this purpose. The study showed that, in terms of composite vulnerability, from both Iyengar & Sudarshan and HEAV 

framework, Changlang, Lower Subansiri and Tirap were the most vulnerable districts while Dibang Valley and Papumpare were the least 

vulnerable districts. The two unequal methods, namely, HEAV mathematical framework based on AHP and Iyengar and Sudarshan’s 

method produced similar results. However, there were some differences in the indices due to difference in the assigned weights to 

indicators. Validation done by comparing state Govt. data, a global flood database and compilation of online news reports with results of 

the study (for both HEAV mathematical framework and Iyengar & Sudarshan’s method) also proved to be quite matching and hence the 

results could be considered acceptable. However, since the AHP of assigning unequal weights was a subjective method and the weights 

were dependent on the decision maker, the Iyengar and Sudarshan’s method was recommended. 
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applying a place-based social vulnerability index developed 

for the United States, to the Lesotho context. 

 

For classificatory purposes, a simple ranking of the districts 

based on the indices would be enough. However, for a 

meaningful characterization of the different stages of 

vulnerability, suitable fractile classification from an 

assumed probability distribution is needed. This fractile 

classification will give more information and better 

understanding about the district. Iyengar and Sudarshan 

(1982) have used beta distribution for classification of 

regions based on multivariate data. Bhatacharjee and Wang 

(2011) also used beta distribution for classification of 

regions based on Facility Deprivation Index (FDI) and 

found it to be appropriate. Therefore, beta distribution is 

used in this study for the classification of districts. 

 

India being the worst flood affected country next to 

Bangladesh, accounts one fifth of the global deaths by flood 

every year and on an average 30 million people are 

evacuated every year. The area vulnerable to flood is 40 

Mha and average area affected by flood is 8 Mha. The 

northeast region of India, consisting of eight states covering 

a geographic area of 26.2 Mha and a population of 40 M, is 

characterized by large rural population (82%), low 

population density (148/km
2
), large percentage of 

indigenous tribal communities (34–91%) and large area 

under forests (60%). The region has two main river basins 

(the Brahmaputra and the Barak), a large dependence of the 

population on natural resources, and poor infrastructure 

development. The region is also characterized by diverse 

climate regimes which are highly dependent on the 

southwest monsoon (June–September). Over 60% of the 

crop area is under rainfed agriculture, and so is highly 

vulnerable to climate variability and climate change 

(Ravindranath et al., 2011).  

 

Arunachal Pradesh, due to its unique location in the fragile 

geo-environment of eastern Himalayan periphery and due to 

poor adaptive capacity, is very much vulnerable to water 

induced disasters like floods and landslides. In addition, the 

Siang River, which is the main contributor to Brahmaputra, 

and other north bank tributaries flow through Arunachal 

Pradesh making this state more vulnerable to floods. As 

such, vulnerability assessment of this state to flood is very 

important and has not been assessed so far. 

 

The main goal of this study was to assign unequal weights 

to selected indicators for hazard, exposure, and adaptive 

capacity for estimation of vulnerability indices to floods, 

and to classify different districts of Arunachal Pradesh 

based on hazard, exposure, adaptive capacity and composite 

vulnerability indices. 

 

Description of study area 

The state of Arunachal Pradesh is situated between 26º 30' 

and 29º 28' N latitudes, and 91º 25' and 97º 24' E longitudes. 

It covers an area of 83,700 sq. km. The state is bounded by 

Tibet region of China in the north, Assam in the south, in 

the east by Myanmar and Nagaland, and in the west by 

Bhutan. The climate of Arunachal Pradesh is humid to per 

humid subtropical characterized by high rainfall and high 

humidity. However, temperate climate prevails at lower 

 
Fig. 1: The district map of Arunachal Pradesh. 
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Himalayan region. The greater Himalayan region is covered 

with perpetual snow. The average annual rainfall varies 

from 1,380 to 5,500 mm. The study area is presented in Fig. 

1. The points shown in the figure are the centroids of each 

district labeled with the district names followed by its 

respective headquarters names. At present, there are 21 

districts of Arunachal Pradesh but for this study, we have 

taken only 13 districts since our data period is 2004 and 

only 13 districts were there during this period. The latitude, 

longitude and elevation values for all the headquarters of 13 

districts are shown in Table 1.  

 

Table 1: District headquarters(HQ) of Arunachal 

Pradesh 

Sl. 

No. 

District 
HQ 

Latitude, 

°N 

Longitude, 

°E 

Altitude, 

m 

1 Changlang Changlang 27.12 95.71 580 

2 Dibang 

Valley 

Anini 28.79 95.89 1698 

3 East 

Kameng 

Seppa 27.32 93.00 363 

4 East Siang Pasighat 28.07 95.34 155 

5 Lohit Teju 27.92 96.17 244 

6 Lower 

Subansiri 

Ziro 27.56 93.80 1688 

7 Papum 

Pare 

Yupia 

(Itanagar) 

27.07 93.59 440 

8 Tawang Tawang 27.59 91.87 2669 

9 Tirap Khonsa 27.19 95.47 1215 

10 Upper 

Siang 

Yingkiong 28.64 95.02 2500 

11 Upper 

Subansiri 

Daporijo 27.99 94.22 600 

12 West 

Kameng 

Bomdila 27.26 92.42 2217 

13 West Siang Along 27.98 94.70 619 

 

Data and Methodology 

Data acquisition 

Values of different indicators of hazard, exposure and 

adaptive capacity were collected for 13 districts of 

Arunachal Pradesh from Directorate of Economics and 

Statistics, Government of Arunachal Pradesh, Itanagar for 

year 2004 and some census data were downloaded for year 

2001 from http://www.censusindia.gov.in. The rainfall data 

used in this study were extracted from long period (1901–

2010) daily gridded rainfall data set collected from India 

Meteorological Department (IMD) (Pai et al., 2014). 

 

Trend analysis of these rainfall data was then carried out for 

the whole 100 years and two sets of 30 years (1971–2000 

and 1981–2010). The Mann-Kendall (MK) (Mann, 1945) 

test was used in this study for detection of rainfall trend. 

MK test was a statistical yes/ no type hypothesis testing 

procedure and, therefore, another index, Sen slope (Sen, 

1968) was used to quantify the magnitude of such trend. 

Being non-parametric, Sen slope also enjoys the same 

advantages mentioned earlier for the MK test. The “Arc 

Trend” ArcGIS toolbar developed by Bandyopadhyay et al. 

(2011) was used for this purpose. The Sen slope values 

were directly used as indicators. However, yes/ no results of 

MK test with significance levels 1%, 5%, and 10% were 

converted to numeric indicators following Table 2. 

 

Table 2: Conversion of MK test result to numeric 

indicator 

Sl. No. 

MK test result 
Value of 

indicator 
1% level of 

significance 

5% level of 

significance 

10% level of 

significance 

1 Y- Y- Y- -3 

2 N Y- Y- -2 

3 N N Y- -1 

4 N N N 0 

5 N N Y+ 1 

6 N Y+ Y+ 2 

7 Y+ Y+ Y+ 3 

 

Selection of indicators and their functional 

relationship with vulnerability 

From the available district-wise data of the state, the 

indicators for each component of vulnerability were 

selected based on the definition given by IPCC on its Third 

Assessment Report (McCarthy et al., 2001), where they 

considered vulnerability to result from the interaction of 

three broad components, namely, hazard, exposure, and 

adaptive capacity. For assessing vulnerability to flood, 

indicators were selected separately for hazard, exposure and 

adaptive capacity in terms of their impact to vulnerability 

(Table 3). After finalizing the indicators, functional 

relationships of the indicators with the vulnerability to flood 

(for Iyengar and Sudarshan’s method) and between the 

indicators and component (for HEAV mathematical 

framework) were set up.  

 

For Iyengar and Sudarshan’s method, the relationships were 

set up based on how the indicators were affecting the 

vulnerability to flood. Two types of functional relationship 

were possible: increase in the value of the indicator 

increased the vulnerability or decreased the vulnerability. 

For example, if we take rainfall, it is clear that higher the 

value of this indicator, more will be the vulnerability of that 

district to flood and we can say there is increasing 

functional relationship with vulnerability which is shown by 

↑ in Table 3. On the other hand, more land area means all of 

it may not get submerged and people can take refuge there, 

leading to decreasing relationship with vulnerability to 

flood, which is shown by ↓ in Table 3. For HEAV 

mathematical framework, the relationship was between the 

indicator and the component (hazard, exposure and adaptive 

capacity) of vulnerability and is also shown in Table 3. 

 

http://www.censusindia.gov.in/
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Arrangement of indicators 

For each component of vulnerability, the collected data 

were then arranged in the form of a rectangular matrix with 

rows representing districts and columns representing 

indicators. Let there be M districts and let us say we have 

collected K indicators. For M number of districts and K 

number of indicators, Xij will be the value of the indicator j 

corresponding to district i and the matrix table will have M 

rows and K columns (i=1,2,3,…,M and j=1,2,3,…,K). 

Normalization of indicators using functional 

relationship 

The methodology used in UNDP’s Human Development 

Index (HDI) (UNDP, 2006) was followed to normalize the 

indicators. Normalization was done based on the functional 

relationship which had already been set (Table 3). 

 

For Iyengar and Sudarshan’s method, if the variables had 

increasing functional relationship with vulnerability then 

normalization was done using equation: 

     
             

                  
   (1) 

And if the variables had decreasing functional relationship 

with vulnerability then   normalization was done using: 

      
              

                  
   (2)  

where ,   is the normalized value of indicator,     is the raw 

value of indicator. 

For HEAV mathematical framework, if the indicators were 

positively associated with the corresponding component 

then normalization was done using Eq. (1) and if the 

indicators were negatively associated with the 

corresponding component then Eq. (2) was used for 

normalization.  

The normalized values for indicators of hazard and 

exposure were given same for both the methods (Iyengar 

and Sudarshan’s method and HEAV mathematical 

framework) since they had same functional relationship. 

However, the functional relationship for adaptive capacity 

for the two methods were different and therefore, the 

normalized values of indicators for both the methods were 

different. 

Methods of Construction of Vulnerability Indices 

(VIs) using Unequal Weights  

The method of simple averages gives equal importance for 

all the indicators which are not necessarily correct. A survey 

of literature (Gbetibouo and Ringler, 2009; Swain and 

Table 3: Functional relationship between the indicators and vulnerability 

Component Sl. No. Indicators Notation Functional 

Relationship (Iyengar 

and Sudarshan’s 

method) 

Functional 

Relationship 

(HEAV mathematical 

framework) 

Hazard 1 Elevation (m) (H1) ↓ ↓ 

2 Rainfall (mm) (H2) ↑ ↑ 

3 Rainfall trend for 30 years (H3) ↑ ↑ 

4 Slope of rainfall trend for 30 years (H4) ↑ ↑ 

5 Rainfall trend of 100 years (H5) ↑ ↑ 

6 Slope of rainfall trend for 100 years (H6) ↑ ↑ 

Exposure 7 Total population (E1) ↑ ↑ 

8 % of agricultural land to total land (E2) ↑ ↑ 

9 % of rain-fed land (E3) ↑ ↑ 

10 % of workforce in agriculture (E4) ↑ ↑ 

11 % of rural population (E5) ↑ ↑ 

12 Cereal/rice yield (metric tonnes/ha) (E6) ↑ ↑ 

13 Total population of livestock and poultry (E7) ↑ ↑ 

14 Consumption of fertilizer (E8) ↑ ↑ 

Adaptive 

Capacity 

 

 

15 Land area (sq. km) (A1) ↓ ↑ 

16 % of literacy rate (A2) ↓ ↑ 

17 % of literacy rate of people aged 15 to 24 (A3) ↓ ↑ 

18 % or urban population (A4) ↓ ↑ 

19 % of household electrified (A5) ↓ ↑ 

20 % of female population (A6) ↓ ↑ 

21 % of students enrolled in primary education (A7) ↓ ↑ 

22 % of students enrolled in secondary education (A8) ↓ ↑ 

23 % of students enrolled in tertiary education (A9) ↓ ↑ 

24 % of population with access to drinking water (A10) ↓ ↑ 

25 % of non-worker population (A11) ↑ ↓ 
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Swain, 2011; Parekh et al., 2015) showed that the following 

two methods could be used to give unequal weights: 

1. Expert Judgement 

2. Iyengar and Sudarshan’s Method 

Expert Judgement 

In this method, the weights were assigned based on expert 

opinion and it was a subjective method. Hazard/ Exposure/ 

Adaptive Capacity/ Vulnerability (HEAV) Mathematical 

Framework based on Analytical Hierarchy Process (AHP) 

was a type of expert judgement method.  

Determination of weights using Analytic Hierarchy 

Process (AHP) 

The AHP is a multi-criteria decision making method 

developed by Saaty (1980) and it uses hierarchical 

structures to represent a problem and then develop priorities 

for alternatives based on the consistency of the judgments 

given by the experts or users. 

 

On the basis of a pair wise comparison weighting scale, the 

vulnerability domains and indicators were prioritized. This 

common scale for assigning of weight was the Saaty Rating 

scale (Table 4). Using AHP pair wise comparison, the 

weights of the indicators was assigned and a weight matrix 

was generated. The weight matrix for hazard, exposure, 

adaptive capacity and composite vulnerability are given in 

Table 5, 6, 7 and 8, respectively. 

 

The n
th

 roots for all indicators were summed and the 

eigenvector corresponding to each indicator was calculated 

by dividing each value of n
th

 root of product by its total. 

The Consistency Index for a matrix was calculated as 

below: 

     
      ג 

     
    (3) 

Where, ג
   

 is the maximum eigen value and n is the 

number of indicators. To estimate ג
   

, each component of 

the new vector was divided by the corresponding 

eigenvector element. The mean of these values gave ג
   

. 

The Consistency Ratio (CR) to measure how consistent the 

judgment was then made. The CI for the different size of 

weight matrix is available in the Saaty’s (1980) book. CR 

could be obtained as follows: 

                 (4) 

The CRs for all the component of each state are given in 

Table 9. 

 

Determination of VIs 

HEAV methodology (grossly based on HVAR methodology 

of Assaf, 2010) was used in this study for quantitative 

assessment of vulnerability for floods to changing climate in 

north-east India. Vulnerability, as a function of weighted 

indicators of hazard, exposure, and adaptive capacity, was 

determined. 

 

Vulnerability was assessed by three criteria, such as hazard, 

exposure, and adaptive capacity as follows (IPCC, 2001): 

Vulnerability = f (Hazard, Exposure, Adaptive Capacity)  

              (5) 

Vulnerability in a particular location can be obtained as 

below: 

                              
   ×                     (6) 

where, 

V(l) is VI at location l, Hc(l) is commensurate composite 

indicator of hazard at location l and whc is its corresponding 

weight, Ec(l) is commensurate composite indicator of 

exposure at location land wec is its corresponding weight; 

Ac(l) is commensurate composite indicator of adaptive 

capacity at location l and wac is its corresponding weight. 

 

To construct the commensurate composite indicator 

different weights was assigned to different indicators under 

hazard, exposure, and adaptive capacity as below: 

   
1

NH

c k k

k

H l wh H l


 
  

(7) 

  Table 4: The Saaty rating scale 

Intensity of 

importance 

Definition Explanation 

1 Equal Importance Two factors contribute equally to the objective. 

3 Somewhat more 

important 

Experience 

and 

judgment 

slightly 

favor one 

over the 

other. 

5 Much more important Experience and judgment strongly favor one over the other. 

7 Very much more 

important 

Experience and judgment very strongly favor one over the other. Its 

importance is demonstrated in practice. 

9 Absolutely more 

important 

The evidence favoring one over the other is of the highest possible 

validity. 

2,4,6,8 Intermediate values When compromise is needed. 

 

Fig 2 : Comparison of relative yields of different crops at different storage levels of the reservoirs 
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   
1

NE

c k k

k

E l we E l


 
  

(8) 

   
1

NA

c k k

k

A l wa A l


 
  

(9) 

where, 

Hk(l) is k
th

 commensurated indicator of hazard at location l 

and whk is its corresponding weight, Ek(l) is k
th
 

commensurated indicator of exposure at location l and wek 

is its corresponding weight, Ak(l) is k
th

 commensurated 

indicator of adaptive capacity at location l and wak is its 

corresponding weight. 

 

Iyengar and Sudarshan’s Method 

Determination of unequal weights 

Iyengar and Sudarshan (1982) assumed that the weights 

vary inversely to the standard deviation of the respective 

indicators of vulnerability and this method was used to find 

the weights of the indicators. Hence the weight, wj, is 

determined by: 

     
 

   
    (10) 

where,           over all the districts for j
th

 indicator and 

c is a normalizing constant that can be obtained as: 

      
 

   

 
    

  

    (11) 

The choice of the weights in this manner ensured that large 

variation in any one of the indicators did not unduly 

dominate the contribution of the rest of the indicators and 

thereby distort the inter-district comparisons (Iyengar and 

Sudarshan, 1982).  

 

Determination of VIs 

Iyengar and Sudarshan (1982) developed a method to work 

out a composite index from multivariate data for Andhra 

Pradesh and Karnataka to rank the districts in terms of their 

economic performance. This method was statistically sound 

and well suited for the development of composite index of 

vulnerability. The VI of i
th

 zone     ) was assumed to be a 

linear sum of weighted xij as given below: 

         
 
          (12) 

where, wj (       and    
 
     ) are the weights 

calculated using Eq. 10. The VI    ) so computed lied 

between 0 and 1, with 1 indicating maximum vulnerability 

and 0 indicating minimum vulnerability. 

 

Classification of districts based on VIs 

For classification of the districts based on the VIs, the beta 

probability distribution, which was generally skewed and 

takes values in the interval (0,1) was applied. This 

distribution was also used by Iyengar and Sudarshan (1982) 

in their study. This distribution has the probability density 

as given below: 

      
 

      
                 

              (13) 

 = 0, otherwise 

with,                       

 
                             (14) 

where, x is the realization variable of the beta function 

whose value lies between 0 and 1, a and b are two 

positive shape parameters that appear as exponents of the 

random variable and control the shape of the distribution. 

 

Based on the VIs for all the districts, the estimated values of 

a and b could be obtained using the method of maximum 

likelihood (Johnson and Kotz, 1970) as below: 

      
        

  
      (15) 

          
        

  
     (16) 

where, m1 is the mean of all VIs and m2 is the variance of all 

VIs. 

Five equal intervals were made and (0, z1), (z1, z2), (z2, z3), 

(z3, z4) and (z4, 1) were the linear intervals such that each 

interval had the same probability weight of 20 percent. 

These fractile intervals could be used to characterize the 

various levels of vulnerability as: 

1. Less vulnerable if 0 < VI < z1 

2. Moderately vulnerable if z1< VI < z2 

3. Vulnerable if z2< VI < z3 

4. Highly vulnerable if z3< VI < z4 

5. Very highly vulnerable if z4< VI < 1 

The values of z1, z2, z3, and z4 could be calculated using 

regularized incomplete beta function calculator. In this 

study the online calculator developed by Casio Computer 

Co. Ltd.(http://keisan.casio.com/exec/system/1180573395) 

was used.  

 

RESULTS AND DISCUSSION 

Normalization of indicators 

Hazard 

The maximum and minimum values (Table 10) were used 

for normalizing all the indicator values. For hazard 

component, taking elevation of the district headquarters 

indicator as an example, the maximum value is 2,669 m 

(Tawang) and minimum value is 155 m (East Siang) above 

mean sea level. These two values were used in either of the 

two Eqs. 1 or 2 for normalizing the indicators depending on 

their functional relationship shown in Table 3. In case of 

elevation of the district headquarters indicator, the more is 

the value, the less would be the vulnerability to flood, as 

most of the district population is normally concentrated near 

the district headquarters. Hence it has a decreasing 

functional relationship with vulnerability. Therefore, Eq. 2 

is used to normalize this indicator. The same procedure is 

followed for other remaining hazard indicators also. As an 

example, the map of normalized rainfall indicator is shown 

in Fig. 2. From the map it can be seen that Changlang has 

the lowest normalized rainfall value of 0.00 and Papumpare 

has the highest value of 1.00.  

Exposure  

For exposure component, taking total population as an 

example, we can see from Table 10 that Lohit  has  

https://en.wikipedia.org/wiki/Shape_parameter
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Table 5 Weight matrix for hazard component 
 Elevation Rainfall Rainfall Trend (30 years) Slope of rainfall trend (30 years) Rainfall Trend (100 years) Slope of rainfall trend (100 years) 

Elevation 1 1/7 1/3 1/3 1/3 1/3 

Rainfall  7 1 7 5 7 5 

Rainfall Trend  (30 years) 3 1/7 1 1/3 1 1/3 

Slope of rainfall trend (30 years) 3 1/5 3 1 3 1 

Rainfall Trend  (100 years) 3 1/7 1 1/4 1 1/3 

Slope of rainfall trend  (100 years) 3 1/5 3 1 3 1 

 

Table 6 Weight matrix for exposure component 

 
Total population 

% of agricultural land to 

total 
% of rain-fed land 

% of workforce in 

agriculture 

% of rural 

population 
Cereal yield 

Total population of 

livestock and poultry 

Consumption 

of fertilizer 

(in metric 

ton) 

Total population 1 1/5 1 1/5 1/9 1/3 1/3 1/3 

% of agricultural land to total 5 1 3 1 1/5 3 7 5 

% of rain-fed land 1 1/3 1 1/3 1/3 3 3 3 

% of workforce in agriculture 5 1 3 1 1 3 7 7 

% of rural population 9 5 3 1 1 5 7 7 

Cereal yield  3 1/3 1/3 1/3 0.2 1 5 3 

Total population of livestock and 

poultry 
3 1/7 1/3 1/7 1/7 0.2 1 1 

Consumption of fertilizer  3 0.2 1/3 1/7 1/7 1/3 1 1 

Table 7 Weight matrix for adaptive capacity component 
 Land area 

(Sq.Km) 

Literacy 

rate (%) 

Literacy rate of 

people aged 15 to 

24 

% of urban 

population 

% of household 

electrified 

% of female 

population 

% of students enrolled 

in primary education 

% of students 

enrolled in 

secondary level 

% of students 

enrolled in tertiary 

level 

Access to 

drinking 

water 

% of non-

worker 

population 

Land area  1 1/7 1/7 1/5 3 1/3 1/3 1/7 1/7 1/5 1/5 

Literacy rate 7 1 1 3 9 3 1 1 1 3 3 

Literacy rate of people aged 15 to 24 7 1 1 3 7 3 1 1 1 3 3 

% of urban population  5 1/3 1/3 1 5 3 1/3 1/3 1/3 1/3 1/7 

% of household electrified  1/3 1/9 1/7 0.2 1 1/3 1/9 1/9 1/9 1/3 1/5 

% of female population  3 1/3 1/3 1/3 3 1 1/5 1/5 1/3 1 1/3 

% of students enrolled in primary 

education  
9 1 1 3 9 5 1 3 5 1 5 

% of students enrolled in secondary 

level  
7 1 1 3 9 5 1/3 1 3 1 5 

% of students enrolled in tertiary 

level  
7 1 1 3 9 3 0.2 1/3 1 1 5 

Access to drinking water 5 1/3 1/3 3 3 1 1 1 1 1 5 

% of non-worker population  5 1/3 1/3 7 5 3 1/5 1/5 1/5 1/5 1 

 
Table 8 Weight matrix for composite vulnerability 

 Hazard Exposure Adaptive Capacity 

Hazard 1 3 5 

Exposure 1/3 1 3 

Adaptive Capacity 1/5 1/5 1 
 

Table 9 The consistency ratios of the AHP weight matrix 
Sl. No. State Hazard Exposure Adaptive 

Capacity 

Composite 

Vulnerability 

1 Arunachal Pradesh 0.05 0.09 0.10 0.03 
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maximum population with 1,43,527 and Upper Siang has 

the lowest with 33,363. By definition of exposure it can be 

defined that more densely populated area may be considered 

more exposed to flood. This is because even if the 

magnitude of the flood is low, a more densely populated 

area would mean a larger number of people exposed to the 

hazard as compared to a less densely populated area 

resulting in more vulnerability. Therefore, for this indicator, 

there will be increasing functional relationship with the 

vulnerability. And hence, Eq. 1 was used to normalize this 

indicator using the maximum and minimum values. 

Similarly, the other indicators of this component were also 

normalized taking their respective maximum and minimum 

values and considering their functional relationships with 

vulnerability. As an example, the map of normalized rural 

population is shown in Fig. 3. The map shows that 

Papumpare has the lowest normalized rural population and 

Upper Siang has the highest. 

  

Adaptive Capacity 

For adaptive capacity component, taking literacy rate as an 

Table 10: Maximum and minimum values of the indicators 

Sl. No. Indicator Maximum Minimum 

Hazard 

1 H1 2669 (Tawang) 153(East Siang) 

2 H2 3451.92 (Papumpare) 1367.67 (Changlang)   

3 H3 1 (West Kameng) -3 (Dibang Valley, East Siang, Lower 

Subansiri, Upper Siang, West Siang ) 

4 H4 0.11 (Tawang) -0.21(Upper Siang) 

5 H5 0 (Changlang, Dibang Valley, East Siang, 

Tawang, Upper Siang, West Kameng, West 

Siang) 

-3 (Lohit, Lower Subansiri, Tirap, Upper 

Subansiri) 

 

6 H6 0.01 (West Siang) -0.02 (Lohit) 

Exposure 

7 E1 143527 (Lohit) 33363 (Upper Siang) 

8 E2 5.82 (Changlang) 0.53 (Upper Siang) 

9 E3 4.61 (Tirap) 0.05 (Upper Siang) 

10 E4 37.17 (Tirap) 9.78 (Papumpare) 

11 E5 100 (Upper Siang) 0.84 (Papumpare) 

12 E6 2.07 (East Siang) 0.84 (Papumpare) 

13 E7 362329 (East Siang) 51774 (Tawang) 

14 E8 116.98 (West Kameng) 24.03 (Papumpare) 

Adaptive Capacity 

15 A1 13029 (Dibang Valley) 2172 (Tawang) 

16 A2 69.32 (Papumpare) 40.64 (East Kameng) 

17 A3 81.65 (West Siang) 57.81 (Tirap) 

18 A4 50.15 (Papumpare) 0 (Upper Siang) 

19 A5 86.15 (Papumpare) 29.03 (East Kameng) 

20 A6 49.63 (East Kameng) 42.97 (West Kameng) 

21 A7 26.79 (Lower Subansiri) 9.45 (Lohit) 

22 A8 3.67 (Lower Subansiri ) 9.45 (Lohit) 

23 A9 1.92 (Dibang Valley) 0.62 (Tirap) 

24 A10 100 (Upper Siang) 86.83 (Papumpare) 

25 A11 63.83(Papumpare) 44.18 (Tawang) 
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example, from Table 10 it can be seen that Papumpare has 

the highest literacy rate with 69.32% and East Kameng has 

the least literacy rate with 40.64%. A high value of this 

variable implies more literates in the district and so they 

will have more awareness to cope with flood. So the 

vulnerability will be lower and literacy rate has decreasing 

functional relationship with vulnerability. Therefore, Eq. 2 

was used for normalizing this indicator using its maximum 

and minimum values. The other indicators of this 

component were also normalized following the same 

procedure. An example map of normalized land area is 

shown in Fig. 4. The map shows that Tawang district has 

the lowest and Dibang Valley has the highest land area. 

Assigning of weights 

Iyengar and Sudershan 

Weights for indicators of hazard component were calculated   

from the normalized hazard indicators. The resulting 

assigned weights were 0.17, 0.15, 0.16, 0.21, 0.12, and 0.20 

for elevation of district headquarters, rainfall, rainfall trend 

for 30 years, slope of rainfall trend for 30 years, rainfall 

trend for 100 years, and slope of rainfall trend for 100 years, 

respectively. 

For indicators of exposure component, the weights assigned 

were 0.12, 0.10, 0.13, 0.13, 0.15, 0.15, 0.12, and 0.11 for 

total population, percentage of agricultural land, percentage 

of rain-fed land, percentage of workforce in agriculture, 

percentage of rural population, cereal yield, total population 

of livestock and poultry, and consumption of fertilizer, 

respectively. 

For indicators of adaptive capacity component, the assigned 

weights were 0.09, 0.09, 0.08, 0.11, 0.10, 0.09, 0.09, 0.08, 

0.07, 0.09, and 0.10 for land area, percentage of literacy 

rate, percentage of literacy rate of people aged 15 to 24, 

percentage of urban population, percentage of household 

electrified, percentage of female population, total students 

enrolled in primary education, total students enrolled in 

secondary education, total students enrolled in tertiary 

education, percentage of population with access to drinking 

water, and percentage of non-worker population, 

respectively. 

HEAV mathematical framework 

Weights for indicators of hazard component were calculated 

from the normalized hazard indicators. The resulting 

assigned weights were 0.04, 0.52, 0.07, 0.15, 0.07 and 0.15 

for elevation of district headquarters, rainfall, rainfall trend 

for 30 years, slope of rainfall trend for 30 years, rainfall 

trend for 100 years, and slope of rainfall trend for 100 years, 

respectively. 

For indicators of exposure component, the weights assigned 

were 0.03, 0.18, 0.09, 0.23, 0.32, 0.08, 0.03 and 0.04 for 

total population, percentage of agricultural land, percentage 

of rain-fed land, percentage of workforce in agriculture, 

percentage of rural population, cereal yield, total population 

of livestock and poultry, and consumption of fertilizer, 

respectively. 

For indicators of adaptive capacity component, the assigned 

weights were 0.02, 0.15, 0.14, 0.05, 0.01, 0.04, 0.19, 0.15, 

0.11, 0.09 and 0.05 for land area, percentage of literacy rate, 

percentage of literacy rate of people aged 15 to 24, 

percentage of urban population, percentage of household 

electrified, percentage of female population, total students 

enrolled in primary education, total students enrolled in 

secondary education, total students enrolled in tertiary 

education, percentage of population with access to drinking 

water, and percentage of non-worker population, 

respectively. 

Construction of VIs 

Based on the weights assigned, the vulnerability indices 

were calculated. The different components of vulnerability 

(hazard, exposure and adaptive capacity) were analyzed 

separately considering indicators belonging to that 

component only, and the districts were ranked depending on 

their relative vulnerability. In addition, for Iyengar and 

Sudarshan, a composite VI was computed by aggregating 

all the indicators of the three components together and for 

HEAV mathematical framework, composite VIs was 

computed by aggregating the indices of each component. 

Computing the vulnerability separately for each component 

in this way help us understand how each district performs 

differently with respect to different components of 

vulnerability, i.e., some districts may have a higher rank on 

the hazard component but a lower rank on the exposure 

component and/ or on adaptive capacity component and 

vice versa (Sharma and Patwardhan, 2008). This will 

ultimately help us identify priority component for remedial 

measures for districts that rank high in the composite VI. 

Iyengar and Sudershan 

Using the weights assigned and the normalized indicators in 

Eq.10, vulnerability indices and ranks for the 13 districts 

were calculated based on indicators of hazard, exposure and 

adaptive capacity components, as well as, composite VI. 

The VIs and ranks calculated considering all indicators are 

shown in Table 11.  

When only hazard component is considered, East Kameng 

is the most vulnerable district followed by West Kameng, 

and Dibang Valley is the least vulnerable district followed 

by Upper Subansiri. This may be because the district 

headquarters of East Kameng is situated in lower elevation 

areas and receive high amount of rainfall and West Kameng 

has maximum rainfall trend in both 30 years and 100 years; 

whereas, district headquarters of Dibang Valley has least 

received rainfall with significant negative trend of rainfall 

for 30 years and Upper Subansiri has significant negative 

trend in both rainfall trend for 30 years and 100 years. 

It can be seen from Table 11 that, when only exposure 

component is considered, Changlang ranks 1
st
 followed by 

East Siang, and Upper Subansiri is the least vulnerable 

district followed by Papumpare. This can be attributed to 

the higher percentage of agricultural land in Changlang and 

East Siang and Papumpare having the minimum values of 

many indicators of exposure component (four out of eight). 
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For the same reason, Upper Siang also ranks third lowest in 

terms of exposure. 

When only adaptive capacity is considered, Tirap ranks first 

followed by Tawang while Papumpare ranks last. This may 

be because Tirap and Tawang have very low values for 

adaptive capacity indicators, e.g., land area, percentage of 

literate people ages 15 to 24, and students enrolled in 

tertiary education; whereas, Papumpare, a small district in 

which capital of Arunachal Pradesh Itanagar is situated, has 

highest literacy rate, highest percentage of urban 

population, and highest percentage of household electrified. 

For calculating the composite VI, all the normalized 

indicators of hazard, exposure and adaptive capacity 

components were considered together. The composite 

vulnerability indices and ranks for the 13 districts of 

Arunachal Pradesh are also shown in Table 11. In terms of 

composite VI Changlang ranks first while Papumpare ranks 

last followed by Dibang Valley. 

 

HEAV mathematical framework 

The vulnerability values and ranks were calculated based on 

indicators of hazard, exposure and adaptive capacity 

components, as well as, composite VIs. The VIs and ranks 

are shown in Table 12. When only hazard component is 

considered, Papumpare is the most vulnerable district 

followed by East Kameng, and Dibang Valley is the least 

vulnerable district, followed by Changlang. When only 

exposure component is considered, Changlang is most 

vulnerable, followed by Tirap, and Papumpare is the least 

vulnerable district followed by Upper Subansiri. When only 

adaptive capacity is considered, Papumpare comes first 

followed by East Siang while Tirap is the least, followed by 

Upper Subansiri.  

For calculating the composite VIs Eq. 6 was used. All the 

normalized indicators of hazard, exposure and adaptive 

capacity components were considered together. The 

composite vulnerability indices and ranks for the 13 districts 

of Arunachal Pradesh are also shown in Table 12. In terms 

of composite VIs, Tirap is most vulnerable with a value of 

1, while Papumpare is the least with a value of 0. 

Classification of districts 

To classify the districts of Arunachal Pradesh based on 

composite VIs, VIs were further graduated using beta 

distribution based on the estimated parameters of a and b. 

The values, thus calculated from Eqs. 15 and 16 are 

presented in Table 13. With these, the values of z1, z2, z3 

and z4 were calculated using the beta distribution online 

calculator developed by Casio Computer Co. Ltd. 

(http://keisan.casio.com/exec/system/1180573395) and the 

resulting 20 percent cut-off points are also shown in Table 

13. Based on these calculations, the districts of Arunachal 

Pradesh were finally classified into five clusters (Very less, 

less, moderate, high, and very high) depending on the levels 

of composite VIs. 

 

 

Table 13: Estimated beta distribution parameters and 

the fractile values 

 a b z1 z2 z3 z4 

Iyengar and 

Sudarshan’s 

method 

13.81 13.31 0.43 0.48 0.53 0.59 

HEAV 

mathematical 

framework 

1.15 0.56 0.39 0.65 0.83 0.95 

 

Table 11: Vulnerability indices and ranks for hazard, 

exposure, adaptive capacity, and composite vulnerability 

from I&S Method 

Districts 

Hazard Exposure Adaptive 

Capacity 

Composite 

vulnerability 

VI Rank VI Rank VI Rank VI Rank 

Changlang 0.63 3 0.71 1 0.68 3 0.68 1 

Dibang Valley 0.31 13 0.35 10 0.43 10 0.38 12 

East Kameng 0.67 1 0.41 7 0.58 6 0.54 6 

East Siang 0.61 4 0.67 2 0.41 11 0.54 7 

Lohit 0.44 10 0.56 4 0.68 4 0.59 3 

Lower 

Subansiri 0.43 11 0.53 5 0.38 12 0.44 10 

Papumpare 0.55 7 0.29 12 0.35 13 0.37 13 

Tawang 0.61 5 0.40 9 0.69 2 0.57 4 

Tirap 0.49 9 0.57 3 0.69 1 0.61 2 

Upper Siang 0.53 8 0.31 11 0.54 7 0.46 6 

Upper 

Subansiri 0.43 12 0.27 13 0.51 8 0.41 11 

West Kameng 0.65 2 0.41 8 0.61 5 0.55 5 

West Siang 0.59 6 0.48 6 0.44 9 0.49 8 
 

Table 12: Vulnerability indices and ranks for hazard, 

exposure, adaptive capacity and composite vulnerability 

index from HEAV framework 

Districts 

Hazard Exposure Adaptive 

Capacity 

Composite 

vulnerability 

VI Rank VI Rank VI Rank VI Rank 

Changlang 0.35 12 0.82 1 0.27 10 0.90 3 

Dibang Valley 0.20 13 0.44 10 0.60 5 0.30 12 

East Kameng 0.71 2 0.51 7 0.40 8 0.89 4 

East Siang 0.64 4 0.62 4 0.68 2 0.83 5 

Lohit 0.51 8 0.52 6 0.25 11 0.81 6 

Lower 

Subansiri 0.66 3 0.64 3 0.64 4 0.92 2 

Papumpare 0.72 1 0.22 13 0.76 1 0.00 13 

Tawang 0.43 9 0.47 9 0.21 12 0.67 8 

Tirap 0.42 11 0.75 2 0.20 13 1.00 1 

Upper Siang 0.58 7 0.54 5 0.48 6 0.78 7 

Upper 

Subansiri 0.63 5 0.37 12 0.47 7 0.51 11 

West Kameng 0.42 10 0.43 11 0.38 9 0.52 10 

West Siang 0.62 6 0.50 8 0.65 3 0.60 9 
 

 

http://keisan.casio.com/exec/system/1180573395
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Iyengar and Sudarshan’s method 

Fig. 5 presents the district classification map based on 

indices of adaptive capacity component. In terms of 

composite vulnerability, Changlang and Tirap have the 

highest VIs and lie in the zone of very high vulnerability 

followed by Lohit, East Siang, East Kameng, West Kameng 

and Tawang which lie in the high vulnerability zone. This is 

because they are low on adaptive capacity indicators with 

moderate on exposure indicators. Dibang Valley, 

Papumpare and Upper Subansiri are least vulnerable to 

flood followed by West Siang in the moderate vulnerability 

zone. 

 

HEAV mathematical framework 

For HEAV framework, based on the levels of vulnerability 

for composite index, the districts are classified and are 

shown in Fig. 6. It is observed that, Tirap has the highest VI 

and lie in the zone of very high vulnerability, followed by 

Changlang, East Kameng and Lower Subansiri lying in the 

high vulnerability zone. This is because the adaptive 

capacity indicators of these districts were low and the 

exposure indicators were high. Dibang valley and 

Papumpare are least vulnerable followed by Upper 

Subansiri, West Kameng and West Siang in the moderate 

vulnerability zone. Their adaptive capacity values were high 

while the exposure indicators were low. 

Validation 

Few data available with the state government of Arunachal 

Pradesh, a global flood inventory (Adhikari et al., 2010), 

and some online compilation of various media reports for 

different years have been collected and analysed for 

validation. In this study, Changlang and Tirap have been 

identified as the districts which are very highly vulnerable 

to flood followed by Lohit, East Siang, East Kameng, West 

Kameng and Tawang. And as per the report of 2010 given 

by Directorate of Disaster Management of Arunachal 

Pradesh (Govt. of Arunachal Pradesh, 2010), Lohit, 

Changlang, East Siang, East Kameng, Dibang Valley, and 

Upper Siang have been worst affected by flood. This report 

and our result are quite similar except for Dibang Valley 

which has been identified as less vulnerable district in our 

study. This may be because by 2010 the socio-economic 

condition of this particular district has changed. An online 

report for 16 July 2004 (ReliefWeb, 2004), which is a 

compilation of reports from Relief and Rehabilitation 

department, Govt. of Arunachal Pradesh and various media 

reports, also shows that East Kameng, East Siang, Lower 

Dibang Valley, Lohit, and Changlang have been worst 

affected by flood. A global flood database (Adhikari et al., 

2010) have listed Lohit, East Siang, East Kameng, and 

Upper Siang as flood affected districts with high fatality 

rate in 2000, 2004, and 2005. In another report given by 

Govt. of Arunachal Pradesh (2014), Changlang, Lohit and 

East Siang have been identified as the highly vulnerable 

districts. All these reports support the result of our study 

and hence been well validated. 

 

CONCLUSION 

The study showed that, East Kameng, Papumpare and West 

Kameng were the most vulnerable districts while 

Changlang, Dibang Valley, Lower Subansiri and Upper 

Subansiri were less vulnerable to flood in terms of hazard 

component. Changlang, East Siang and Tirap were found to 

be the most vulnerable districts and Papumpare and Upper 

Subansiri the least vulnerable districts in terms of exposure 

component. Tawang, Tirap and Upper Subansiri were found 

to be the most vulnerable districts and East Siang, Lower 

Subansiri and Papumpare were the least vulnerable districts 

to flood in terms of adaptive capacity. In terms of composite 

vulnerability, from both Iyengar & Sudarshan and HEAV 

framework, it was found that Changlang, Lower Subansiri 

and Tirap were the most vulnerable districts while Dibang 

Valley and Papumpare were the least vulnerable districts. A 

point to be noted here is that districts that emerge as very 

highly vulnerable when the components are considered 

separately may not necessarily mean that the same district 

will be highly vulnerable when all the components are 

considered together, i.e., composite vulnerability. For 

           

 

 Fig. 5. Classified map of Arunachal Pradesh 

in terms of composite vulnerability to flood 

as per Iyenger&Sudarshan method. 

Fig. 6. Classified map of Arunachal Pradesh 

in terms of composite vulnerability to flood 

as per HEAV Framework. 
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example, Papumpare is not in very highly vulnerable zone 

even if it is very highly vulnerable in terms of hazard 

components due to its less vulnerability from adaptive 

capacity component. 

 

The two unequal methods, namely, HEAV mathematical 

framework based on AHP and Iyengar and Sudarshan’s 

method produced similar results. However, there were some 

differences in the indices due to difference in the assigned 

weights to indicators. Validation done by comparing state 

Govt. data, a global flood database and compilation of 

online news reports with results of the study (for both 

HEAV mathematical framework and Iyengar and 

Sudarshan’s method) also proved to be quite matching and 

hence the results could be considered acceptable. However, 

since the AHP of assigning unequal weights was a 

subjective method and the weights were dependent on the 

decision maker, the Iyengar and Sudarshan’s method was 

recommended. 
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