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INTRODUCTION  

The urban development raised challenges for sustainable 

water resources both surface water and groundwater 

(Sivaraj et al., 2016; Uddameri et al., 2014). Land use 

patterns and population density is altered with growing 

developments leading to high stress on aquifers (Uddameri 

et al., 2014). The gradual development of cities and an 

increase in transportation facilities build the roads and 

paved walkways decreasing the permeable area for 

infiltration and recharging. According to the census of India 

(2011), the population density of India increased from 324 

per square kilometer to 382 per square kilometer and the 

population rate is growing immensely. The coasts along the 

Indian Peninsula get settled with people as inland 

inhabitation gets limited with an increase in population 

density. Urban settlements close to the coast lead to 

wastewater effluent discharge from fishing and allied 

industries associated with fishermen’s community 

contaminating the surface and groundwater either partly or 

to a limited extent. This seriously affects the terrestrial and 

marine ecosystem through surface flow and infiltration of 

rain and then subsurface flow in the form of groundwater 

discharge (Eckhardt and Stackelberg, 1995; Cole et al., 

2006; Bowen et al., 2007). When there is a lack of 

streamflow, subterranean flows take a role in transferring 

nutrient discharge (Johnson et al., 2008). Thus groundwater 

discharge through the subsurface medium (Submarine 

groundwater discharge –SGD) is a serious concern that 

attracts attention. Any subsurface flow of groundwater to 

the marine environment despite its composition and driving 

force is known as submarine groundwater discharge 

(Burnett et al., 2003; Moore, 2010; Taniguchi et al., 2002; 

Senafy and Fadlelmawla, 2014). The groundwater discharge 

may be less but the nutrient flow associated with it is 

generally greater than that of the streamflow (Moore, 1999; 

Taniguchi et al., 2002; Kim et al., 2005; Rodellas et al., 

2015). This study examines the influence of urbanization on 

SGD in a harbor environment (Vellayil Harbor), situated in 

the urban setting of Kozhikode district which is the second-

largest urban agglomeration in Kerala and 20th largest in 

the country with a population of two million. Moreover, this 

work contributes towards achieving the sustainable goals of 

water and sanitation through waste and groundwater 

management by understanding the role of urbanization on 

nutrient input to the groundwater and its discharge to the 

coastal environment in a city residing in the coastal section. 

METHODS 

Study area 

Vellayil Harbor in Kozhikode district of Northern Kerala 

lies in the southern part of the Southwest Coast of India 

along the Kerala-Konkan coast. Positioned at the latitude 

11.264965 N and longitude 75.766292 E (Fig 1), it is a 

major fishing and economic hub in the Kozhikode district 

covering a total area of 2, 06,940 m
2
. The harbor basin 

having a depth of 3m is enclosed within two breakwaters of 

length 750 m in the South and 530 m in the North. There 

occurs mixed semi-diurnal micro-tide with an average tidal 

range of 0.8 m. Even though Kozhikode has a stable coast, 
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moderate erosion is found to occur just a few kilometers 

south of Elathur headland, which is close to Vellayil Harbor 

(Rafeeque et al., 2020).  

Data collection 

Radon concentration of coastal water (temporal and spatial), 

and porewater in the harbor area was measured using the 

automated radon monitoring system (RAD 7 and RAD 

AQUA, Durridge Co.). The automated radon monitoring 

system was installed inside the harbor basin along the 

eastern end of the southern breakwater for the temporal 

survey of coastal water (Fig 2), measuring radon 

concentrations every 30 minutes for about 24 hours. A 

spatial survey for radon concentration inside and outside the 

harbor was done using the automated radon monitoring 

system (RAD 7 and RAD AQUA), tied in the boat, and 

rowed around the basin. Ten pore-water samples at the 

lower reaches of the harbor, adjoining the radon- time series 

location, were collected during low tide time. These 

samples were measured for radon concentration using RAD 

H2O coupled with radon in the air monitoring system (RAD 

7). The filtered samples were analyzed for ammonia, nitrate, 

nitrite, phosphate, and silicate using Skalar SAN++ 

Continuous Flow Analyzer. The salinity, pH, and 

temperature of porewater were measured in situ using a 

multi-parameter water quality analyzer (Aquaread AP-

2000). Samples for Dissolved Organic Carbon (DOC) were 

measured via combustion with a non-dispersive infrared 

sensor detector (Shimadzu™ TOC-VCSH). Dissolved 

Inorganic Carbon (DIC) concentrations are measured with 

an automated attached-to-cavity ring-down spectrometer 

(Picarro G2201-I). Total Alkalinity was measured via gran 

titration (Grasshoff et al. 2009). 

 

Fig. 2. (a) Location of temporal measurement of radon 

concentration; (b) and  (c) RAD7 and RAD-Aqua water 

exchanger system for the spatial survey of radon 

concentration in seawater using boat; (d) Pore-water 

sample collection 

RESULTS AND DISCUSSION  

Physicochemical parameters  

Physico-chemical parameters of porewater inside and 

outside harbor vary with distance from the shoreline to land. 

Inside the harbor, salinity varies from 0.4ppt at 5m from the 

 

Fig. 1. Locations of sampling in and around Vellayil Harbor, Kozhikode Kerala 
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shoreline to 24.5ppt at 1m from the shoreline. Outside the 

harbor, it varies from 0.7ppt at 5m to 22.2ppt at 1m from 

the shoreline. The pH varies from 7.58 at 1m from the 

shoreline to 8.09 at 5m from shoreline inside the harbor. 

Outside harbor it ranges from 7.69 at 1m to 8.16 at 4m from 

the shoreline. The depth of the harbor varies up to 3m 

depending on the location. The total alkalinity of pore water 

varies from 2114 to 5870 µmol/L with an average value of 

3412 µmol/L. 

Variation of radon (
222

Rn) concentration 

Radon concentration in seawater varies temporally from 

12.5 to 33.3 Bq/m
3
 (Fig 3) with an average of 22.5 Bq/m

3
 

and spatially from 5.62 Bq/m
3
 at 2m depth to 26.4 Bq/m

3
 at 

0.5m with an average of 17.76 Bq/m
3
. Inside the harbor, 

pore water radon concentration varies from 100.37 to 333.2 

Bq/m
3
 with an average of 219.49 Bq/m

3
. 

Nutrients in pore water 

Inside the harbor, porewater ammonia varies from 0 to 

3.8µmol/L with an average of 0.44 µmol/L, and outside the 

harbor, it varies from 8.1 to 131.8 µmol/L with an average 

of 37.83 µmol/L. Nitrite (NO2) varies from 0 to 13.7 

µmol/L inside the harbor with an average of 4.07 µmol/L 

and it varied between 0 to 20.4 µmol/L outside the harbor 

with an average of 4.15 µmol/L. Nitrate (NO3) varies from 

 

Fig. 3: Variation of radon concentration with water level (March 2018) 

 

 

Fig. 4: Plots of nutrient concentrations and Total Alkalinity vs salinity for the pore water: (a) DIN; (b) SiO3; 

(c) PO4 (d) DOC (e) DIC and (f) TA 
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0 to 237.9 µmol/L inside the harbor with an average of 

91.64 µmol/L and from 0 to 47 µmol/L outside the harbor 

with an average of 9.39 µmol/L. Phosphate varies from 0 to 

11.6 µmol/L inside the harbor with an average of 4.99 

µmol/L and 2.5 to 4.6 µmol/L outside the harbor with an 

average of 3.34 µmol/L. Silicate varies from 14.3 to 96.4 

µmol/L inside the harbor with an average of 47.86 µmol/L  

and from 48.4 to 149.3 µmol/L outside the harbor with an 

average of 73.62 µmol/L. Inside the harbor pore water, 

organic carbon content varies from 72 to 245 µmol/L, and 

outside the harbor, it varies from 138 to 169 µmol/L. The 

inorganic carbon content of porewater varies from 1410 to 

3764 µmol/L and outside harbor it varies from 1754 to 5566 

µmol/L. Fig. 4 shows plots of nutrient concentrations versus 

salinity in porewater. 

DISCUSSION 

Submarine groundwater discharge  

The calculation for the SGD seepage rate is done based on 

Burnett and Dulaiova, (2003); Burnett et al., (2008); Jacob 

et al., (2009), and Dulaiova et al., (2010). Figure 3 displays 

the variation of radon with time, the water level at the 

location of radon time series varies between 0.6m to 1.8m. 

Pore water radon concentration is considered as the end 

member for radon in calculating SGD flux. Inside the 

harbor, the breakwaters and groins restrict the exchange 

with the outer system. The average SGD seepage in the 

harbor is calculated to be 53.l9+/-16.7cm/day. It varies from 

0.93+/-1.9 cm/day during high tide to 159.035+/-49.85 

cm/day during low tide. The variation in the SGD rate 

implies its dependence on the tide and water level 

fluctuation (Fig. 5). The SGD flux is calculated to be 

13.25×10
4 

m
3
/day based on the discharge rate and seepage 

face.  

The region covering the headland of Elathur (laterite cliff) 

in the north to the Kallayi tidal inlet in the south exhibits a 

positive hydraulic gradient favoring the occurrence of SGD 

in the Vellayil Harbor (George et al., 2018). The positive 

terrestrial hydraulic gradient drives SGD (Xinya et al., 

2009; Swarzenski et al., 2007; Simonds et al., 2008). 

Harbor and its nearby region are deposited with newly 

accreted sediments of recent coastal alluvium (sand) which 

is formed from the regression of the coastal line (Rafeeque 

et al., 2020). According to the report by UNESCO (2004), 

the seepage through permeable sediments like sand may be 

less; however, its contribution will be large for the reason 

that it flows through a wider area. The evidence reveals 

more towards the non channelized flow of groundwater 

discharge along Vellayil harbor as its presence can’t be 

detected visually in any form like diffused flow or spring, 

and the driving force of this flow to this harbor environment 

is found to be hydraulic gradient (George et al., 2018), 

supported by the topography and the underlying geology 

and tidal force (Fig 5). Non-channelized flows are usually 

recirculated groundwater discharge than freshwater 

(UNESCO, 2004) and so SGD along Vellayil Harbor could 

be recirculated which is driven either by a combination of 

hydraulic gradient and tidal forcing or simply either one of 

these. 

Nutrient flux associated with SGD  

The nutrient concentration varies with chemical reactions 

like denitrification, precipitation, dissolution of minerals, 

and desorption during its traverse to the nearshore water 

(Lee et al., 2012). Here, we assume that such changes have 

not occurred between the sampling locations of porewater 

and discharge for calculating the nutrient flux. The nutrient 

concentration of the pore water of the intertidal zone is 

measured inside the harbor and outside the harbor, and its 

average is used as the end member for nutrient flux 

estimation using SGD flux. The DIN flux to harbor through 

SGD is 1.07×10
4
 mol/day, DIP is 5.83 ×10

2
 mol/day, DSi is 

0.74×10
4 

mol/day, DIC is 3.79×10
5
 mol/day and DOC is 

1.96×10
4
 mol/day. The streamflow is absent into the 

Vellayil harbor and so the nutrient transport is either 

through the subsurface flows like SGD or through 

 

Fig. 5: Variation of SGD seepage with water level (March 2018) 
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anthropogenic depositions. The flux proves that SGD is an 

important pathway for nutrient discharge in the nearshore 

regions of Kozhikode. The contribution of SGD in adding 

nutrients to the harbor has not been considered much in the 

nutrient budget evaluation of the SW coast of India. 

Urbanization and its impacts on groundwater and 

nutrient discharges 

In the urban sprawl of Kozhikode, urbanization has greatly 

affected the groundwater scenario. Kozhikode district is 

38.25% urbanized (Census of India, 2001) and the 

population growth rate is 7.20% (Census of India, 

2011).Vellayil Harbor is a tourist attraction of Kozhikode 

district for its beautiful beach and situated very close to 

Kozhikode beach, 1.5 to 2 km, which is yet another tourist 

spot. Urbanization along the coastal zone disrupts the 

groundwater recharge, as buildings, roads, paved walkways, 

etc. have taken over the place of soil through which 

infiltration occurs. Eventually, the recharge to the zone of 

saturation through the vadose zone reduces and badly 

impacts the coastal aquifer.  The level of groundwater falls 

and weakens the groundwater movements to the oceans. 

The amount of groundwater discharged is less, as compared 

with other locations, but nutrient discharge is comparable. 

According to Jesiya (2019), the Kozhikode urban zone faces 

severe space constraints for proper leach pits. When the 

number of people living per unit area increases there occurs 

a lack of proper sanitation facilities and pits which pollute 

groundwater (Jesiya 2019).  The proximity of the sanitation 

facility to the drinking water source led to high nitrate and 

bacterial contamination in the coastal aquifers (Jesiya 

2019). This ultimately stresses the aquifer through 

pollution. Basak and Nazimuddin, (1993) and Salaj et al. 

(2018b) confirmed that the lateral flow of groundwater 

through the coastal urban aquifers of Kozhikode can 

transport contaminants within as well as around the aquifer 

systems. Accordingly, the number of nutrients in 

groundwater increases tremendously, resulting in high 

SGD-associated nutrient flux. The nutrient discharged 

through SGD is one of the main contributors to the nutrient 

budgets of coastal water (Costa et al., 2006; Garcia-Solsona 

et al., 2008).  

Role of nutrients through SGD in the primary 

production  

Net primary productivity in the coastal zone can be 

enhanced through nutrients derived from SGD (Kim et al. 

2011; Luo et al., 2014). In this system, the N:P ratio (17.87) 

is almost similar to the Redfield ratio (16) indicating that 

both nitrogen and phosphorus get reduced in tandem during 

phytoplankton growth. A slight increase in the N:P ratio 

here is the effect of growing urbanization. In a few years 

when the trend in urbanization grows higher, the N:P ratio 

through SGD will increase tremendously as an increase in 

urbanization can lead to a higher level of N:P ratios (Santos 

et al., 2014). Consequently, nutrients discharged through 

SGD become the main factor for the balanced growth of 

phytoplankton (Dodds and Whiles, 2019). Analogous 

conditions of the N:P ratio is observed during upwelling 

also (Tyrrell, 2019). Coastal upwelling occurs during SW 

monsoon along the coasts of Southwest coast of India 

(Banse, 1959; Darbyshire, 1967; Johannessen et al., 1981; 

Lathipha and Murthy, 1985; Maheswaran, 2000; Muni 

Krishna, 2007; Rao et al., 2004; Sharma, 1978) involving 

the offshore transport of surface water and its replacement 

by cold, nutrient-rich subsurface water (Muni Krishna 

2008). Nevertheless, the sampling season for the current 

study is Pre-monsoon (March), which is a non-upwelling 

season for the SW coast of India, accordingly, SGD-derived 

nutrient flow supports the primary productivity in the 

nearshore region of the Kozhikode urban segment. 

CONCLUSION 

The present study in the Vellayil Harbor located in the 

Kozhikode city limits focused on assessing the urbanized 

coastal aquifer for the groundwater discharge through the 

subsurface flow and its contribution to the nutrient budget 

using the radon mass balance model. The spatial 

distribution of radon concentration indicated its mixing 

inside the harbor water rather than identifying a point 

location of discharge. The SGD flux into the harbor was 

calculated as 13.25×10
4 
m

3
/day and is found to be less when 

compared with other regions of submarine discharge along 

the Kozhikode coast. SGD through this region is expected 

to be a combination of fresh groundwater and recirculated 

seawater where hydraulic gradient and tidal forcing are 

suspected to act as the drivers. Our study indicated that as 

the pollutant discharge to the groundwater is high it can 

lead to its disposal to the marine environment through SGD 

impairing the natural balance of the marine ecosystem. 

Thus, SGD through the urbanized coastal aquifer of 

Kozhikode coast acts as a contributor of nutrient fluxes to 

the harbor and to sea and influences its primary 

productivity, nutrient budget and nutrient cycling. 

Unchecked disposal of wastes, improper sanitation, and 

drainage can lead to increased nutrient discharge leading to 

unbalanced ecological coexistence with development. 

Appropriate waste disposal and aquifer management 

through regular monitoring and action plans are 

recommended in Kozhikode City to maintain a sustainable 

coastal environment and to ensure the availability of safe 

sanitation and drinking water. Also, this work contributes to 

the judicial management of sanitation and groundwater of 

Kozhikode City for ensuring sustainable management of the 

urbanized coastal aquifer.  
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