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Technology, Kurukshetra. A re-circulating system of water 
supply is established with pumping of water from a sump to an 
overhead tank from where water flows under gravity to the 
experiment channel through stilling chamber and baffle wall 
which is used to dampen the turbulent in the flow of water. A 
transition zone between stilling chamber and the channel 
further reduces the turbulence of flowing water, if any. At a 
suitable distance from the inlet of the main tunnel, the silt 
ejector model was fixed across the full width of the main 
channel from where an escape channel was taken out from 

which sediment laden lower portion of water was allowed to 
eject. An adjustable tailgate at the downstream of the main 
channel as well as the escape channel help to maintain uniform 
velocity and regulate discharge in the main channel and escape 
channel respectively as shown in Fig.1. Sediment of uniform 
sizes and varying concentrations are poured in main canal at 
suitable distance in upstream side of ejector and corresponding 
ejected from the escape channel is collected in trapping device 
that helps to measure the efficiency of silt ejector. 

The number of main tunnel & corresponding sub tunnels of the 
ejector were varied to obtain nine models.  The experiments 
were conducted on these models with varied concentrations for 
three uniform sizes of the sediment at different Froude 
numbers. The characteristics of experimental data is given in 
Table 1.  

Support Vector Regression (SVR) 
Support vector machines are classification and regression 
methods, which have been derived from statistical learning 

theory (Vapnik (1998)). The Support vector machines based 
classification methods is based on the principle of optimal 
separation of classes. If the classes are separable, this method 
selects from among the infinite number of linear classifiers, the 
one that minimise the generalisation error or at least an upper 
bound on this error, derived from structural risk minimisation. 
Thus, the selected hyper plane will be one that leaves the 
maximum margin between the two classes, where margin is 

Table 1:  Characteristics of train and test data used 

Input 
parameter 

Train data 
 

Test data 
 

Min Max Mean St. dev. Min Max Mean St. dev. 

Dimensioned data 
V 0.08 0.18 0.127 0.027 0.08 0.18 0.126 0.027 
D 0.29 0.30 0.299 0.002 0.29 0.3 0.299 0.002 

W 0.45 0.45 0.45 0.00 0.45 0.45 0.45 0.00 

Q 0.011 0.024 0.017 0.04 0.011 0.024 0.017 0.04 

Fr 0.047 0.105 0.074 0.016 0.047 0.105 0.073 0.016 

r 15.385 30.25 21.591 2.886 16.6 30.25 22.348 3.058 
Dn 0.15 0.425 0.293 0.111 0.15 0.425 0.293 0.112 
m 3 5 3.968 0.824 3 5 3.964 0.828 
s 3 5 4 0.805 3 5 4 0.805 
Conc. * 10-6 20.7 193 68.387 38.916 18.3 207 56.623 32.84 

Non-dimensioned data 

V/U* 0.828 2.124 1.404 0.394 0.736 2.124 1.381 0.385 

Fr 0.052 0.105 0.074 0.016 0.047 0.099 0.073 0.015 

H1/D 0.233 0.241 0.234 0.002 0.0233 0.241 0.234 0.002 

D/Dn 682.353 2000 1225.85 551.125 682.353 2000 1211.859 547.71 

Q/VD2 1.449 1.552 1.502 0.015 1.406 1.552 1.501 0.018 
V/wj 1.342 9.618 3.943 2.506 1.193 9.618 3.825 2.472 
r 15.385 30.25 21.26 2.756 16.6 30.25 22.202 3.093 
m 3 5 3.964 0.823 3 5 3.964 0.833 
s 3 5 3.994 0.805 3 5 4.012 0.804 
Conc. * 10-6 18.3 207 77.728 38.138 19.4 71.7 36.56 11.845 

Where Q=Discharge in m3/s;V= Velocity of approaching m/s;Dn = Uniform size of sediment in mm; Conc.= Concentration 
(volume/volume); H1= Diaphragm height in m;D = depth of water in m; W= Width of  channel in m; s = number of sub tunnels 
; m= number of main tunnels ; Fr= Froude number; r= Extraction Ratio (%); U*= ඥ܏. .܀  in which g= acceleration due to܁
gravity, R = hydraulic mean radius in m and S = slope of the channel 
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defined as the sum of the distances of the hyper plane from the 
closest point of the two classes (Vapnik (1995)). 

Vapnik (Vapnik (1995)) proposed ε -Support Vector 
Regression (SVR) by introducing an alternative ε - insensitive 
loss function. This loss function allows the concept of margin 
to be used for regression problems. The purpose of the SVR is 
to find a function having at most ε deviation from the actual 
target vectors for all given training data and have to be as flat 
as possible (Smola (1996)). For a given training data with k 
number of samples be represented by { }iy,ix , i = 1, …, k, 

where ix  is input vector and iy is the target value, a linear 
decision function can be represented by  

( ) bf += xwx ,     (1) 

Where NRw∈  and b ∈R. xw,  represents the dot product 

in space NR .  In Equation 1, vector w determine the 
orientation of a discriminating plane whereas scalar b 
determine the offset of the discriminating plane from the 
origin. A smaller value of w indicates the flatness of Equation 
(1), which can be achieved by minimising the Euclidean norm 

defined by 
2w (Vapnik (1995)). Thus, an optimisation 

problem for regression can be written as (Smola, A. J., 1996): 

minimise
2

2
1 w  

subject to   
⎪⎩

⎪
⎨
⎧ ≤−−

≤−+
ε
ε

by
yb

ii

ii

xw,
xw,

   (2) 

The optimisation problem in Equation (2) is based on the 
assumption that there exists a function that provides an error 
on all training pairs which is less thanε . In real life problems, 
there may be a situation like one defined for classification by 
Cortes, C. and Vapnik (1995). So, to allow some more error, 

slack variables ', ξξ  can be introduced and the optimisation 
problem defined in Equation (2) can be written as below to 
deal with infeasible constraints of the optimization problem (2) 
(Smola(1996)):  

Minimise  ( )∑ ++
=

k

1i
ii

2 C
2
1 'ξξw  

Subject to iii by ξε, +≤−− xw  

'ξε, iii yb +≤−+xw   

and 0≥', ii ξξ  for all    i = 1, 2,……, k.  (3)  

The constant C> 0 is a user-defined parameter which 
determines the trade-off between the flatness of the function 
and the amount by which the deviations to the error more than 
ε  can be tolerated. The minimization problem in Equation (3) 
is called the primal objective function. It was found that t in 

most cases the optimization problem defined by Equation (3) 
can easily be solved by converting it into a dual formulation 
(Cortes and Vapnik  (1995)). The optimisation problem in 
Equation (3) can be solved by replacing the inequalities with a 
simpler form determined by transforming the problem to a dual 
space representation using Lagrangian multipliers (Luenberger 
(1984)).  

The Lagrangian of Equation (3) can be formed by introducing 

positive Lagrange multipliers iλ , ''
iii η,η,λ i = 1,….,k and 

multiplying the constraint equations by these multipliers, and  
finally  subtracting  the  results  from  the  objective  function. 
The Lagrangian for Equation (3) can now be written as: 

( ) ( )

( ) ( )∑∑

∑ ∑

==

= =

+−−−++−

++−+−++=

k

1i

'
i

'
iii

k

1i
ii

'
i

'
i

k

1i

k

1i
iiii

'
ii

2

bx,wy

bx,wyCw
2
1L

ξηξηξελ

ξελξξ

 
(4) 

The dual variables in equation (4) have to satisfy iλ , 
''

iii η,η,λ ≥ 0. The solution of the optimisation problem 

involved in the design of SVR can be obtained by locating the 
saddle point of the Lagrange function defined in the equation 
(4). The saddle points of equation (4) can be obtained by 
equating partial derivative of L with respect to w, b, 

'
ii and ξξ to zero and getting: 

( ) 0. i
k

1i
i

'
iw =∑ −−=∂

=
xw λλL

  
(5) 

( )∑ =−=∂
=

k

1i
i

'
ib 0λλL

   
(6) 

0C ii =−−=∂ ηλLξi    
(7) 

0C '
i

'
i' =−−=∂ ληLξi

                                (8)                            

Substituting equations (5), (6), (7) and (8) in equation (4) 
results in the optimisation problem of maximizing: 

( ) ( ) ( ) ( ) ( )∑∑∑∑
=== =

−++−−−−
k

i
iii

k

i
iiji

k

i

k

j
jjii y

1

'

1

'

1 1

'' .
2
1 λλλλελλλλ xx  

subject to ( ) 0
1

=−∑
=

k

i
ii λλ ' and [ ]C,0, '

ii ∈λλ  (9) 

Dual variables '
ii , ηη are eliminated by using conditions in 

equations (7) and (8) and can now be written as '
i

'
i C ηλ −=

and ii C ηλ −= , whereas equation (5) can be written as 

( ) i
k

1i
i

'
i . xw ∑ −=

=
λλ . Equation (9) is a quadratic 
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programming problem and can be solved to get the values of 

i
'

i and λλ . The prediction problem in equation (1) can now 
be written as: 

( ) ( ) bf i
k

1i
ii +∑ −=

=
xxx ,λλ '   (10) 

The techniques discussed above can be extended to allow for 
non-linear support vector regression by introducing the 
concept of the kernel function (Vapnik (1995)). This is 
achieved by mapping the data into a higher dimensional 
feature space. By doing this, the training data are moved into a 
higher-dimensional feature space where the training data may 
be spread further apart and a larger margin may be found by 
performing linear regression in feature space. The regression 
problem in feature space can be written by replacing ji xx ⋅  

in equation (6) with ( ) ( )ji xΦxΦ ⋅ . Thus, the optimisation 
problem of equation (9) can be written as: 

maximize

( ) ( ) ( ) ( ) ( )∑∑∑∑
=== =

−++−−−−
k

i
iii

k

i
iiji

k

i

k

j
jjii yK

1

'

1

'

1 1

'' .
2
1 λλλλελλλλ xx

subject to ( ) 0
1

' =−∑
=

k

i
ii λλ and [ ]C,0, '

ii ∈λλ .    (11) 

where: 

( ) ( ) ( )jiji xΦxΦx,x ⋅≡K                                  (12) 

This relation is also called the kernel trick since no calculation 
of the mapping ( )xΦ  is required in the feature space. Support 
vector regression function in equation (10) can now be written 
as: 

( ) ( ) ( ) bKf i
k

1i
ii +∑ −=

=
xxx ,λλ '

                      
(13) 

In this optimisation problem, the kernel function is computed 
rather than ( )xΦ  so as to reduce the computational cost of 
dealing with the high dimension feature space. For further 
details about SVR, readers are referred to (Vapnik, 1995). 

Details of Kernel functions 
In situations with non-linear decision surfaces, SVM use a 
mapping to project the data in a higher dimensional feature 
space. To make computation simpler, the concept of the kernel 
function was introduced (Vapnik, V. N., 1995).A kernel 
function allows SVR to work in a high-dimensional feature 
space, without actually performing calculations in that space. 
Kernel functions are mathematical functions and according to 
Cortes and Vapnik  (1995), any symmetric positive semi-
definite function, which satisfies Mercer's conditions             
(Vapnik (1995)), can be used as a kernel function with SVR. A 
number of kernel functions are discussed in the literature, but it 
is difficult to choose one which gives the best generalisation 
with a given dataset. As the choice of kernel function may 
influence the prediction capabilities of the SVR, three most 
frequently used kernel functions: a polynomial kernel function 

( ( ) ( )( ) ∗

+⋅= d1K '' xxxx, ), normalized polynomial kernel 

functionሺKୡ୭ୱ୧୬ୣሺx, xᇱሻ ൌ Kሺx, xᇱሻ/ඥKሺx, xሻ. Kሺxᇱ, xᇱሻ) and 

radial basis kernel ( ( )
2

eK
'

'xx, xx−−
=

γ
) were used in 

present study. Where 
∗d  and γ  are the parameters of 

polynomial and radial basis kernel function respectively. The 
use of SVR requires setting of user-defined parameters such as 
regularisation parameter (C), type of kernel, kernel specific 
parameters and error-insensitive zone ε. Variation in error-
insensitive zone ε  found to have no effect on the predicted 
shear strength in present study so a default value of 0.0010 was 
chosen for all experiments (Witten and Frank (2005)). The 

optimal value of parameters C, 
∗d  and γ  were obtained after 

several trials with this dataset. The correlation coefficientsand 
Root Mean Square Error (RMSE) were compared to reach at 
an optimal choice of these parameters. Training is used to 
generate the model with SVR on the input dataset for 
predicting the removal efficiency of silt ejector. The testing is 
used to estimate the accuracy of regression model. The 
correlation coefficient, R2 and root mean square error (RMSE) 
were used to judge the performance of SVR in predicting the 
efficiency of silt ejector in present study.  

RESULT AND DISCUSSION  
The observed data from nine models were arranged into 
dimensional and non-dimensional categories as given in Table 

Table 2: Coefficient of correlation, Root mean square error and R2 for Dimensional & Non-dimensional data 
Dimensional data 

 Type 
Kernel 

Training set Testing set 
Correlation 
coefficient 

Root mean 
square error R2 

Correlation 
coefficient 

Root mean 
square error R2 

Normalized 
Poly kernel 0.8704 7.726 0.743 0.8059 9.4636 0.649 
Poly kernel 0.7373 9.8303 0.543 0.7178 10.8248 0.515 
RBF kernel 0.7263 10.6528 0.498 0.6986 11.9999 0.488 

Non Dimensional data 
Normalized 
Poly kernel 0.9056 5.5628 0.820 0.824 11.0495 0.659 
Poly kernel 0.8174 7.4483 0.668 0.8 11.9472 0.640 
RBF kernel 0.7911 8.3726 0.625 0.7381 15.666 0.544 
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1. These datasets are used to develop SVR models for three 
kernel functions, wherein two third data (169 values)are used 
for training whileone third (84 values)for testing. Coefficient 
of correlation, root mean square error (RMSE) and R2  were 
estimated to compare the performance of Kernel based SVR 
models. Table 2 provides the value of coefficient of 
correlation, RMSE and R2of dimensional and non- dimensional 
dataset. 

For dimensional training data, the coefficient of correlations 
for normalised polykernel, polykernel and RBF kernel based 
SVR are found to be 0.8704, 0.7373 and 0.7063 
respectively.The values of R2for the three kernels were found 
as 0.743, 0.543 and 0.498 and that of RMSE as 7.726,9.830 
and 10.952. The values of coefficient of correlation as well 
asR2is highest and RMSE is least for the normalised 
polynomial kernel.  Thus, the performance of normalised 

 
 

Fig.2: Predicted efficiency vs. observed efficiency of Dimensional Training Data 
 
 

 
Fig. 3: Predicted efficiency vs. observed efficiency of Dimensional Test Data 
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polynomial kernel is betterthan other kernels in predicating the 
efficiency of silt ejector.  

Dimensional Test Data 
For test dataset, the coefficient of correlations for respective 
normalised polynomial kernel, polynomial kernel and RBF 
kernel are found as 0.8059, 0.7178 and 0.6986. The values of 
R2 for the three kernels were found as 0.649, 0.515 and 
0.488and that of RMSE as 9.4636,10.8248 and 11.99958. The 
values of coefficient of correlation as well as R2are highest and 
RMSE is least for normalised polynomial kernel indicating 
better performance of normalised polynomial kernel in 
comparison to other kernels in predicating the efficiency of silt 
ejector.  

Further, an agreement diagram with ± 40 % error lines of 
perfect agreement as shown in Fig. 2 and Fig. 3 for training 
and test data respectively is drawn between observed removal 
efficiency vs. predicted removal efficiency. It is seen that 
majority of the predicted efficiency by normalised polynomial 
kernel is close to observed efficiency.   

In order to investigate the effect of non-dimensional input 
parameters on efficiency of silt ejector, another trial was run 
with training data set. To have fair comparison, same values of 
user defined parametersare used as in case ofdimensional data 
during trials. Similar trends of coefficient of correlation, R2 and 
RMSE were obtained as in case of dimensional dataset.   With 
testing dataset, the values of coefficient of correlation = 0.824, 

 
 

Fig.4: Predicted efficiency vs. observed efficiency of Non- Dimensional Training Data 
 

 
Fig.5: Predicted efficiency vs. observed efficiency of Non- Dimensional Test data 
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0.8, 0.7381; R2=0.659, 0.64 and 0.544 and RMSE= 11.04, 
11.94 and 15.666respectively werefoundby normalized 
polynomial kernel, polynomialkernel and RBF based SVR. 
The values of coefficient of correlation as well as R2 is highest 
and RMSE is least for normalised polynomial kernel, which is 
similar to dimensional input parameters. Thus the performance 
of normalised polynomial kernel is best in comparison to other 
kernels in predicating the efficiency of silt ejector. Further, it is 
seen from Table 2 that the values of coefficient of correlation 
as well as R2are higher and RMSE value is lower for dataset of 
non-dimensional input parameters, indicating better 
performance this data set. This is further supported by Fig.4 
and 5 showing the plots between observed vs predicted 
removal efficiencies for normalized poly kernel, RBF based 
SVR with non dimensional training and testing data 
respectively. It is seen that the majority of predicted values are 
lying between +30% lines of perfect agreement that is 
lowering of error band is achieved from +40%. 

Comparison of the values of coefficient of correlation, RMSE 
and R2along with error bandsfor dimensional data and non- 
dimensional data suggest better performance by non- 
dimensional data based modelling.  

SENSITIVITY ANALYSIS 
Sensitivity tests were conducted using normalized polynomial 
kernel based SVR to determine the relative significance of 

each of the input parameters on the efficiency of silt ejector. 
Several factors affect the removal efficiency of silt ejector. 
These include width of channel, size of silt, concentration of 
silt, flow depth, approach velocity, number of main tunnel, sub 
tunnel and extraction ratio. Various input combinations as 
shown in Table 3 were considered by removing one input 
variable in each case and its influence on predicted efficiency 
was evaluated in terms of the root mean square error and 

coefficient of correlation as main performance criteria. Results 
from Table 3 suggest that the Concentration of silt and size of 
silt has major influence in predicting the removal efficiency of 
silt ejector with SVR in comparison to other input parameters 
and removing any other input parameter have no major 
influence on the predicting capability of SVR. The results 
suggest for normalized polynomial kernel based SVR provide 
best performance with data combinationof width of channel, 
size of silt, concentration of silt, flow depth, approach velocity, 
number of main tunnels, sub tunnels and extraction ratio. 

CONCLUSION 
This paper investigates the potential of support vector machine 
(SVM) using normalized polynomial kernel, polynomial kernel 
and radial based functions in predicting the efficiency of tunnel 
type silt ejector. It is concluded that the normalized polynomial 
kernel based SVR model works well in predicting the 
efficiency of silt ejector in comparison to polynomial kernel 
and RBF kernel based SVR. Further, non-dimensional input 
parameters suggest a better performance than dimensional 
input parameters. The finding of this study encourages the use 
of normalized polynomialkernel based SVR modeling in the 
prediction of efficiency of tunnel type silt ejector, non- 
dimensional input parameters offer an improved performance 
and also conclude that theconcentration of silt and size of silt 
has major influence in predicting the removal efficiency. 

REFERENCES 
1. Ansari, M. and Khan, M., 2014. "Performance 

assessment of vortex settling chambers." ISH Journal of 
Hydraulic Engineering,10.1080/09715010.2014.925330, 
pp324-338.  

2. Athar M., Kothyari, U. C.  and Garde, R J., 2002. 
“Sediment Removal Efficiency of Vortex Chamber Type 

Table 3: Sensitivity analysis 
 

Input combination 
Input 

parameter 
removed 

SVR 
Coefficient of 

correlation RMSE 

V, D, W, Q, Fr, Conc. ,r, Dn , m, s.  0.8704 7.726 

 D, W,Q, Fr, Conc. ,r, Dn ,m,s V 0.8757 7.2326 

V, W, Q, Fr ,Conc. ,r, Dn , m, s D 0.8587 7.674 

V, D, Q, Fr, Conc. ,r, Dn , m, s W 0.8704 7.3726 

V, D, W, Fr, Conc., r, Dn , m, s Q 0.8701 7.3694 

V, D, W, Q, Conc., r, Dn , m, s Fr 0.8751 7.247 

 V, D, W, Q, Fr, r, Dn , m, s Conc. 0.7641 9.667 
V, D, W, Q, Fr, Conc., Dn , m ,s r 0.8313 8.2828 
V, D,W,Q, Fr,  Conc., r, m ,s Dn 0.5464 12.737 
V, D, W, Q, Fr, Conc. ,r, Dn  ,s. m 0.8418 8.053 
V, D, W, Q, Fr, Conc. ,r, Dn  ,m. s 0.8674 7.4837 



J. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016 
 

48 

Sediment Extractor” Journal of Hydraulic Engineering, 
pp1051-1059. 

3. Atkinson, E. and Lawrence, P., 1984. “A Quantitative 
Design Method for Tunnel Type Sediment Extractors.” 
Fourth Cong., Asian and Pacific Division, International 
Association for Hydraulic Research, Chiang Mai-
Thailand,   pp 77-81. 

4. Atkinson, E., 1984. “A Design Procedure for Tunnel 
Type Sediment Extractor.” Report No OD/TN6, 
Hydraulics Research, Wallingford, UK. 

5. Atkinson, E., 1987.  “Field Verification of a Performance 
Prediction Method for Canal Sediment Extractor.” 
Report No. OD 90, Hydraulics Research, Wallingford, 
UK. 

6. Cortes, C. and Vapnik, V.N., 1995. “Support vector 
networks.” Machine Learning; 20(3): pp273–297. 

7. Choudhary, G. and Mitra, R., 2004. “A holistic Design of 
Silt Ejector”, Major Project Submitted in partial 
Fulfilment of the Requirements for the Award of the 
Degree of B.Tech in Civil Eng, NIT Kurukshetra 136 
119. 

8. Dhillon, G.S, Aggarwal, R.K and Kotwal, A.N., 1977. 
“Model Prototype Study of Sediment Ejectors on Upper 
Bari Doab Hydraulic channel.” Prac. 40th Reo, Session 
of CBIP, 3, India, pp47-56 

9. Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott, 
M. B, 2001. “Model induction with support vector 
machines: Introduction and applications.” J. Comput. 
Civ. Eng., 153, pp208–216. 

10. Gilardi, N., Kanevski, M., Maignan, M., and Mayoraz, 
E., 1999. “Environmental and pollution spatial data 
classification with support vector machines and 
geostatistics.” Proc., Workshop W07 Intelligent Tech- 
niques for Spatio-Temporal Data Analysis in 
Environmental Applications, ACAI99 , Greece, July, 
pp43–51. 

11. Garde, R.J and Pande, P. K., 1976. “Use of Sediment 
Transport Concept in Design of tunnel type sediment 
excluders.” ICID Bulletin, 25, No 2, pp101-111. 

12. Gautam, Suchitra Rani, 2005. “Computer Aided Design 
of Tunnel Type Silt Ejector” M.E Thesis of Civil 
Engineering in Hydraulics and Flood Control 
Engineering, Delhi College of Engineering University of 
Delhi Delhi-110042 

13. HR, Wallingford, 1993. “Design Manuals for Canal 
Sediment Extractors.” Vol. 1-3, Overseas Development 
Unit, HR, Wallingford Ltd. 

14. IPRI, 1988. “Sediment Trapping Efficiency of Tunnel 
type Sediment Extractor at RD22.165m UBDC 
Machine." Rep No: HY/R/23 87-88, Irrigation and Power 
Res. Institute, Amaritsar, Punjab, India. 

15. Kanevski, M., Pozdnukhov, A., Canu, S., Maignan, M., 
Wong, P. M., and Shibli, S. A. R., 2002. “Support vector 
machines for classification and mapping of reservoir 

data.” Soft computing for reservoir characterization and 
modelling , P. Wong, F. Aminzadeh, and M. Ni- kravesh, 
eds., Physica-Verlag, Heidelberg, Germany, pp531–558. 

16. Kothyari, U.C and Panda, P.K, 1994.“Design of tunnel 
type sediment excluder” ,journal of irrigation and 
drainage engineering ,vol 120 ,No.1 ,Paper No.4502 

17. Liu, H., Wang, X., Tan, D., and Wang, L., 2006. “Study 
on traffic information fusion algorithm based on support 
vector machines.” Proc., Sixth Int. Conf. on Intelligent 
Systems Design and Applications (ISDA’06), pp183–187. 

18. Luenberger, D. G., 1984.“Linear and Nonlinear 
Programming (2nd Edition).” Reading, Massachusetts, 
Addison-Wesley Inc.,. 

19. Mohammad,A., Mohammad, T. B., Abdul, S. S. And Afzd, 
A., 2015. “Sediment control investigations and river flow 
dynamics: impact on sediment entry into the large canal 
“, Environ Earth Science Springer,Vol.74, Issue-74. 

20. Niknia, N., Keshavarzi, A., and Hosseinipour, E., 2011. 
“Improvement the Trap Efficiency of Vortex Chamber for 
Exclusion of Suspended Sediment in Diverted Water.” 
World Environmental and Water Resources Congress 
2011: pp. 4124-4134 

21. Pal, M., Singh, N.K., and Tiwari, N.K., 2010. “Support 
vector regression based modeling of pier scour using 
field data”. Elsevier, Engineering Applications of 
Artificial Intelligence Vol.24 issue 5. pp 911–916. 

22. Pal, M., and Mather, P. M., 2005. “Support vector 
machines for classification in remote sensing.” Int. J. 
Remote Sens., 26, pp1007–1011. 

23. Pal, M., 2006. “Support vector machines-based modeling 
of seismic liquefaction potential.” Int. J. Numer. Analyt. 
Meth. Geomech., 30,983–996. Machine in lake water 
level prediction.” J. Hydrol. Eng., 113,pp 199– 205. 

24. Raju, K., Kothyari, U., Shrivastava, S., and Saxena, M., 
1999. ”Sediment Removal Efficiency of Settling Basins.” 
J. Irrig. Drain Eng., 125(5), pp 308–314. 

25. Sarwar, M.K., Anjum, M.N. and Mahmood S., 2013. 
“Impact of silt- Excluder on sediment on sediment 
management of irrigation canal: A case study of D. G. 
Khan canal, Pakistan.” Arab J Sci EnGG.38 (12): pp.73-
84. 

26. Singh, K. K., 1987. “Experimental study of settling 
basins.” ME thesis, Dept. of Civil Engineering, Univ. of 
Roorkee, Roorkee U.P., India. 

27. Singh, Mandeep, Banerjee, J., Patel, P.L., & Tiwari, 
Himanshu, 2013.  “Effect of silt erosion on Francis 
turbine: a case study of Maneri Bhali Stage-II, 
Uttarakhand, India”. ISH Journal of Hydraulic 
Engineering Volume 19,   Issue 1,   pp 1-10. 

28. Singh, K. K.,  Pal, M., Ojha, C. S. P. and Singh, V. P., 
2008. “Estimation of Removal Efficiency for Settling 
Basins Using Neural Networks and Support Vector 
Machines”. J. Hydrol. Eng., 2008, 13(3): pp146-155. 



J. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016 
 

49 

29. Smola, A. J., 1996.“Regression estimation with support 
vector learning machines.” Master’s Thesis, 
TechnischeUniversitätMünchen, Germany,  

30. Tiwari, N.K., 2006.  “Optimal Design of Silt Ejector”, 
PhD Thesis, Civil Engg. Dept.; NIT Kurukshetra (India). 

31. UPIRI, 1975. “Sediment Excluders and Ejectors.” UP 
Irrigation Res.Institute, Roorkee, India, Design 
Monograph (45-H1-6). 

32. Vapnik, V. N., 1995. “The Nature of Statistical Learning 
Theory, New York:”. Springer-Verlag, 1995. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33. Vapnik, V. N., 1998. “Statistical Learning Theory, New 
York: John Wiley and Sons. 

34. Vittal, N and Shivcharan, G.A., 1994. “Diaphragm 
Height of Ejector of Uniform sediment”, Vol 120, No. 3 
ASCE, pp398-405.  

35. Witten, I. H. and Frank, E., 2005.“Data Mining: 
Practical Machine Learning Tools and Techniques 
(Second Edition).” San Francisco, Morgan Kaufmann. 

 


