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SUPPORT VECTOR REGRESSION BASED I\/IODELING OF TRAPPING
EFFICIENCY OF SILT EJECTOR
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ABSTRACT

This paper investigates the potential of support vector machines based regression approach to predict the efficiency of tunnel type silt ejector
using the data obtained from model study. The number of main tunnel & corresponding sub tunnels of the ejector were varied to obtain nine

models.

The experiments were conducted onthese models with varied concentrations for three uniform sizes of the sediment at different

Froude numbers. The removal efficiency of the ejectors are predicted by support vector machine (SVM)using normalized poly kernel based
function, poly kernel based function and radial based function and comparison of these results are made with observed removal efficiency.
The SVM experiments were run with two types of input variables first with dimensional variablesand second with non-dimensional
variablesand removal efficiency as output. The two third of random observed data was used for training andrest one third data was used
forvalidation. Results of predicted efficiency of silt ejector with dimensionless data using all three algorithms suggest a better performance
as compared with dimensional data. The sensitivity analysis, further, suggests the importance of silt size and concentration of silt in
predicting the efficiency of silt ejector when using SVM based modelling approach.

Keywords: Tunnel type silt ejector. Removal-efficiency models, main-tunnel, sub-tunnel, size of sediments, concentration of sediments,

support vector machine (SVM)

INTRODUCTION
The sedimentation (Sarwar et. al (2013), Mohammad et. al
(2015)) in irrigation canals causes severe operational and
maintenance problems. In power canals, trouble may be
encountered in the turbines as silt may erode the blades and
subsequently reduce the efficiency (Singh, M. et al (2013)).To
tackle the menace of sedimentation in the canal, there are
preventative and curative measures available. The most
prevalent preventative means is provision of a Sediment
Excluder in the river at head works of the canal (Kothyari et. al
(1994), Sarwar et. al (2013), IS 6531 (1972)). Further, there
are many available curative measures viz. vortex tube ejector,
settling basins (Singh (1987)) and the vortex settling basins
type of extractor have  been
investigated by Atkinson (1984),

tool that use input variables in the database to predict the
unknown or future values of other variables of interest, often
with better prediction accuracy. The advantage of modelling
with the techniques is that it is capable of adapting the changes
in data and is more robust to noise in the data. Several studies
have also been reported on the application of SVM-based
models in civil engineering (Gilardi et. al. (1999); Dibike et.
al.(2001); Kanevski et. al (2002); Pal and Mather (2005); Pal
(2006); Liu et. Al (2006), Singh et. al (2008), Pal et. al
(2010)). However, little has been reported on the use of SVMs
for the prediction of performance of silt ejectors. The present
study investigates applicability of support vector method for
estimation of removal efficiency on the data collected from the
model test conducted in laboratory.

Raju et. al (1999), Athar et. al
(2002), Ansari et. al (2014) and
Niknia et. al (2011) respectively.
But the most prevalent and
popular curative method is tunnel I
type sediment ejector which is the |—| | | :
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and UPIRI (1975).The removal
efficiency of the ejector has been
found highly unreliable. Support
vector machine (SVM) is a new
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Fig. 1: Schematic diagram of experimental set up

Experimental Set up and procedure

The experiments were conducted in rigid channel having
vertical side wall 0.45m wide, 1m deep and 24.0 m long
located in the hydraulic laboratory of National Institute of
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Technology, Kurukshetra. A re-circulating system of water
supply is established with pumping of water from a sump to an
overhead tank from where water flows under gravity to the
experiment channel through stilling chamber and baffle wall
which is used to dampen the turbulent in the flow of water. A
transition zone between stilling chamber and the channel
further reduces the turbulence of flowing water, if any. At a
suitable distance from the inlet of the main tunnel, the silt
ejector model was fixed across the full width of the main
channel from where an escape channel was taken out from
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The number of main tunnel & corresponding sub tunnels of the
ejector were varied to obtain nine models. The experiments
were conducted on these models with varied concentrations for
three uniform sizes of the sediment at different Froude
numbers. The characteristics of experimental data is given in
Table 1.

Support Vector Regression (SVR)
Support vector machines are classification and regression
methods, which have been derived from statistical learning

Table 1: Characteristics of train and test data used

Input Train data Test data
parameter

Min Max Mean St. dev. Min Max Mean St. dev.
Dimensioned data
v 0.08 0.18  0.127 0.027 0.08 0.18 0.126 0.027
D 0.29 0.30  0.299 0.002 0.29 0.3 0.299 0.002
W 0.45 0.45 0.45 0.00 0.45 0.45 0.45 0.00
Q 0.011  0.024 0.017 0.04 0.011  0.024  0.017 0.04
Fr 0.047  0.105 0.074 0.016 0.047  0.105 0.073 0.016
r 15.385  30.25 21.591 2.886 16.6 30.25  22.348 3.058
D, 0.15 0425 0.293 0.111 0.15 0.425 0.293 0.112
m 3 5 3.968 0.824 3 5 3.964 0.828
s 3 5 4 0.805 3 5 4 0.805
Conc. * 107 20.7 193 68.387 38.916 18.3 207 56.623 32.84

Non-dimensioned data

V/U 0.828 2.124 1404 0.394 0.736  2.124 1.381 0.385
Fr 0.052  0.105 0.074 0.016 0.047  0.099  0.073 0.015
H,/D 0.233 0.241 0.234 0.002 0.0233  0.241 0.234 0.002
D/D, 682.353 2000 1225.85 551.125 682.353 2000 1211.859 547.71
Q/VD? 1.449 1552  1.502 0.015 1.406  1.552 1.501 0.018
V/w; 1.342 9.618 3.943 2.506 1.193  9.618  3.825 2472
r 15.385  30.25 21.26 2.756 16.6 30.25 22.202 3.093
m 3 5 3.964 0.823 3 5 3.964 0.833
s 3 5 3.994 0.805 3 5 4.012 0.804
Conc. * 10 18.3 207  77.728 38.138 19.4 71.7 36.56 11.845

Where Q=Discharge in m3/s;V= Velocity of approaching m/s;D, = Uniform size of sediment in mm; Conc.= Concentration
(volume/volume); H;= Diaphragm height in m;D = depth of water in m; W= Width of channel in m; s = number of sub tunnels
; m= number of main tunnels ; Fr= Froude number; r= Extraction Ratio (%); U'= +/ 8- R.Sin which g= acceleration due to
gravity, R = hydraulic mean radius in m and S = slope of the channel

which sediment laden lower portion of water was allowed to
eject. An adjustable tailgate at the downstream of the main
channel as well as the escape channel help to maintain uniform
velocity and regulate discharge in the main channel and escape
channel respectively as shown in Fig.1. Sediment of uniform
sizes and varying concentrations are poured in main canal at
suitable distance in upstream side of ejector and corresponding
ejected from the escape channel is collected in trapping device
that helps to measure the efficiency of silt ejector.

theory (Vapnik (1998)). The Support vector machines based
classification methods is based on the principle of optimal
separation of classes. If the classes are separable, this method
selects from among the infinite number of linear classifiers, the
one that minimise the generalisation error or at least an upper
bound on this error, derived from structural risk minimisation.
Thus, the selected hyper plane will be one that leaves the
maximum margin between the two classes, where margin is
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defined as the sum of the distances of the hyper plane from the
closest point of the two classes (Vapnik (1995)).

Vapnik (Vapnik (1995)) proposed & -Support Vector
Regression (SVR) by introducing an alternative & - insensitive
loss function. This loss function allows the concept of margin
to be used for regression problems. The purpose of the SVR is
to find a function having at most & deviation from the actual
target vectors for all given training data and have to be as flat
as possible (Smola (1996)). For a given training data with k

number of samples be represented by {xi,yl-}, i=1, ..k

where X; is input vector and Y;is the target value, a linear
decision function can be represented by

f(x)=(w,x)+b (1)

Where W € RN andb €R. <W, X> represents the dot product

in space RY. mn Equation 1, vector w determine the
orientation of a discriminating plane whereas scalar b
determine the offset of the discriminating plane from the
origin. A smaller value of w indicates the flatness of Equation
(1), which can be achieved by minimising the Euclidean norm

2
defined by ”W” (Vapnik (1995)). Thus, an optimisation

problem for regression can be written as (Smola, A. J., 1996):

minimise E ”W”

IN

, V. —<w,x.>—b £
subject to ! ! 2)

< ,xi>+b—yi <g¢
The optimisation problem in Equation (2) is based on the
assumption that there exists a function that provides an error
on all training pairs which is less than &. In real life problems,
there may be a situation like one defined for classification by

Cortes, C. and Vapnik (1995). So, to allow some more error,

'
slack variables £, & can be introduced and the optimisation

problem defined in Equation (2) can be written as below to
deal with infeasible constraints of the optimization problem (2)
(Smola(1996)):

Minimise %”W”2 + Ci(fi + fl)
i=l1

Subject to yi—<W,Xi>—b < e+
and&, , & 2 0 forall i=1,2,...k (3)

The constant C> 0 is a user-defined parameter which
determines the trade-off between the flatness of the function
and the amount by which the deviations to the error more than
& can be tolerated. The minimization problem in Equation (3)
is called the primal objective function. It was found that t in

J. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016

most cases the optimization problem defined by Equation (3)
can easily be solved by converting it into a dual formulation
(Cortes and Vapnik (1995)). The optimisation problem in
Equation (3) can be solved by replacing the inequalities with a
simpler form determined by transforming the problem to a dual
space representation using Lagrangian multipliers (Luenberger
(1984)).

The Lagrangian of Equation (3) can be fonned by introducing
..,k and

multiplying the constraint equations by these multlphers, and
finally subtracting the results from the objective function.
The Lagrangian for Equation (3) can now be written as:

[— M +c§15+§) zz(ﬁg —y, +(wx) +b)

i=l

—2/1(8+§+y wx ) 2771§+771 )

i=l

positive Lagrange multipliers 4, ﬂl 1, 771 i=1,

“)

The dual variables in equation (4) have to satisfy 7Li,

i, N ,nilz 0. The solution of the optimisation problem

involved in the design of SVR can be obtained by locating the
saddle point of the Lagrange function defined in the equation
(4). The saddle points of equation (4) can be obtained by
equating partial derivative of L with respect to w, b,

&, and (fl.' to zero and getting:

k '
0,L :W—Z(/1i —/li).xi =0 (5)
i=1
k '
GbLzz(ii —li)=0 (6)
i=1
64L= C—-4-1n=0 (7
0. L= C—-n -4 =0 ®)

Substituting equations (5), (6), (7) and (8) in equation (4)
results in the optimisation problem of maximizing:

)-ela + 2 2l -4)

lkk

334l -4) s

—1 J=l

k
subject toZ(ﬂiv - /11.) = Oand 4;, ﬂi' € [0, C] )

i=1
Dual variables #; , 7; are eliminated by using conditions in

equations (7) and (8) and can now be written as ﬂi =C - n;

and il =C —#;, whereas equation (5) can be written as
k '

W = Z(/li _’11) .X; . Equation
i=1

(9) is a quadratic
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programming problem and can be solved to get the values of

/; and A;. The prediction problem in equation (1) can now
be written as:

£(x )=§(Ai' - Ai)<xi,x>+b

1=

(10)

The techniques discussed above can be extended to allow for
non-linear support vector regression by introducing the
concept of the kernel function (Vapnik (1995)). This is
achieved by mapping the data into a higher dimensional
feature space. By doing this, the training data are moved into a
higher-dimensional feature space where the training data may
be spread further apart and a larger margin may be found by
performing linear regression in feature space. The regression

problem in feature space can be written by replacing X; - X j
in equation (6) with q)(xi)- q)(x j)' Thus, the optimisation
problem of equation (9) can be written as:

maximize

SSi-ally —@)m.xj)—agiz +4~)+leyf(4 -2)

|
271

k(- :

subject to Z(/li - /11-) = 0and 4, 4, € [0, C]. (11)
i=1

where:

K(xi,Xj)E ‘I’(Xi)'q’(xj)

This relation is also called the kernel trick since no calculation

(12)

of the mapping (I)(X) is required in the feature space. Support

vector regression function in equation (10) can now be written
as:

f(x) = i(/li' = /1i)K(xi ,X)+b (13)

1=
In this optimisation problem, the kernel function is computed
rather than CI)(X) so as to reduce the computational cost of

dealing with the high dimension feature space. For further
details about SVR, readers are referred to (Vapnik, 1995).
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Details of Kernel functions

In situations with non-linear decision surfaces, SVM use a
mapping to project the data in a higher dimensional feature
space. To make computation simpler, the concept of the kernel
function was introduced (Vapnik, V. N., 1995).A kernel
function allows SVR to work in a high-dimensional feature
space, without actually performing calculations in that space.
Kernel functions are mathematical functions and according to
Cortes and Vapnik (1995), any symmetric positive semi-
definite function, which satisfies Mercer's conditions
(Vapnik (1995)), can be used as a kernel function with SVR. A
number of kernel functions are discussed in the literature, but it
is difficult to choose one which gives the best generalisation
with a given dataset. As the choice of kernel function may
influence the prediction capabilities of the SVR, three most
frequently used kernel functions: a polynomial kernel function

(K(X, X )= ((X X )+ l)d* ), normalized polynomial kernel
function(K esine (%, X") = K(x,x") /KX, x). K(X’, X)) and
2

—y|x=x|

radial basis kernel (K(X, XI)= e ) were used in

present study. Where d " and y are the parameters of

polynomial and radial basis kernel function respectively. The
use of SVR requires setting of user-defined parameters such as
regularisation parameter (C), type of kernel, kernel specific
parameters and error-insensitive zone €. Variation in error-
insensitive zone € found to have no effect on the predicted
shear strength in present study so a default value of 0.0010 was
chosen for all experiments (Witten and Frank (2005)). The

%
optimal value of parameters C, d and y were obtained after

several trials with this dataset. The correlation coefficientsand
Root Mean Square Error (RMSE) were compared to reach at
an optimal choice of these parameters. Training is used to
generate the model with SVR on the input dataset for
predicting the removal efficiency of silt ejector. The testing is
used to estimate the accuracy of regression model. The
correlation coefficient, R? and root mean square error (RMSE)
were used to judge the performance of SVR in predicting the
efficiency of silt ejector in present study.

RESULT AND DISCUSSION

The observed data from nine models were arranged into
dimensional and non-dimensional categories as given in Table

Table 2: Coefficient of correlation, Root mean square error and R’ for Dimensional & Non-dimensional data

Dimensional data
Training set Testing set
Type Correlation Root mean Correlation Root mean
Kernel coefficient square error coefficient square error R’
Normalized
Poly kernel 0.8704 7.726 0.743 0.8059 9.4636 0.649
Poly kernel 0.7373 9.8303 0.543 0.7178 10.8248 0.515
RBF kernel 0.7263 10.6528 0.498 0.6986 11.9999 0.488
Non Dimensional data
Normalized
Poly kernel 0.9056 5.5628 0.820 0.824 11.0495 0.659
Poly kernel 0.8174 7.4483 0.668 0.8 11.9472 0.640
RBF kernel 0.7911 8.3726 0.625 0.7381 15.666 0.544
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1. These datasets are used to develop SVR models for three
kernel functions, wherein two third data (169 values)are used
for training whileone third (84 values)for testing. Coefficient
of correlation, root mean square error (RMSE) and R® were
estimated to compare the performance of Kernel based SVR
models. Table 2 provides the value of coefficient of
correlation, RMSE and Rof dimensional and non- dimensional
dataset.

. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016

For dimensional training data, the coefficient of correlations
for normalised polykernel, polykernel and RBF kernel based
SVR are found to be 0.8704, 0.7373 and 0.7063
respectively. The values of R*for the three kernels were found
as 0.743, 0.543 and 0.498 and that of RMSE as 7.726,9.830
and 10.952. The values of coefficient of correlation as well
asR%s highest and RMSE is least for the normalised
polynomial kernel. Thus, the performance of normalised
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Fig.2: Predicted efficiency vs. observed efficiency of Dimensional Training Data
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polynomial kernel is betterthan other kernels in predicating the
efficiency of silt ejector.

Dimensional Test Data

For test dataset, the coefficient of correlations for respective
normalised polynomial kernel, polynomial kernel and RBF
kernel are found as 0.8059, 0.7178 and 0.6986. The values of
R? for the three kernels were found as 0.649, 0.515 and
0.488and that of RMSE as 9.4636,10.8248 and 11.99958. The
values of coefficient of correlation as well as R*are highest and
RMSE is least for normalised polynomial kernel indicating
better performance of normalised polynomial kernel in
comparison to other kernels in predicating the efficiency of silt
ejector.

. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016

Further, an agreement diagram with + 40 % error lines of
perfect agreement as shown in Fig. 2 and Fig. 3 for training
and test data respectively is drawn between observed removal
efficiency vs. predicted removal efficiency. It is seen that
majority of the predicted efficiency by normalised polynomial
kernel is close to observed efficiency.

In order to investigate the effect of non-dimensional input
parameters on efficiency of silt ejector, another trial was run
with training data set. To have fair comparison, same values of
user defined parametersare used as in case ofdimensional data
during trials. Similar trends of coefficient of correlation, R* and
RMSE were obtained as in case of dimensional dataset. With
testing dataset, the values of coefficient of correlation = 0.824,
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Fig.4: Predicted efficiency vs. observed efficiency of Non- Dimensional Training Data
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0.8, 0.7381; R*=0.659, 0.64 and 0.544 and RMSE= 11.04,
11.94 and 15.666respectively werefoundby normalized
polynomial kernel, polynomialkernel and RBF based SVR.
The values of coefficient of correlation as well as R? is highest
and RMSE is least for normalised polynomial kernel, which is
similar to dimensional input parameters. Thus the performance
of normalised polynomial kernel is best in comparison to other
kernels in predicating the efficiency of silt ejector. Further, it is
seen from Table 2 that the values of coefficient of correlation
as well as R*are higher and RMSE value is lower for dataset of
non-dimensional  input parameters, indicating  better
performance this data set. This is further supported by Fig.4
and 5 showing the plots between observed vs predicted
removal efficiencies for normalized poly kernel, RBF based
SVR with non dimensional training and testing data
respectively. It is seen that the majority of predicted values are
lying between +30% lines of perfect agreement that is
lowering of error band is achieved from +40%.

Comparison of the values of coefficient of correlation, RMSE
and R’along with error bandsfor dimensional data and non-
dimensional data suggest better performance by non-
dimensional data based modelling.

SENSITIVITY ANALYSIS

Sensitivity tests were conducted using normalized polynomial
kernel based SVR to determine the relative significance of
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coefficient of correlation as main performance criteria. Results
from Table 3 suggest that the Concentration of silt and size of
silt has major influence in predicting the removal efficiency of
silt ejector with SVR in comparison to other input parameters
and removing any other input parameter have no major
influence on the predicting capability of SVR. The results
suggest for normalized polynomial kernel based SVR provide
best performance with data combinationof width of channel,
size of silt, concentration of silt, flow depth, approach velocity,
number of main tunnels, sub tunnels and extraction ratio.

CONCLUSION

This paper investigates the potential of support vector machine
(SVM) using normalized polynomial kernel, polynomial kernel
and radial based functions in predicting the efficiency of tunnel
type silt ejector. It is concluded that the normalized polynomial
kernel based SVR model works well in predicting the
efficiency of silt ejector in comparison to polynomial kernel
and RBF kernel based SVR. Further, non-dimensional input
parameters suggest a better performance than dimensional
input parameters. The finding of this study encourages the use
of normalized polynomialkernel based SVR modeling in the
prediction of efficiency of tunnel type silt ejector, non-
dimensional input parameters offer an improved performance
and also conclude that theconcentration of silt and size of silt
has major influence in predicting the removal efficiency.

Table 3: Sensitivity analysis

Input SVR
Input combination parameter Coefficient of
removed correlation RMSE
V,D, W, Q, Fr, Conc. ,r, D, , m, s. 0.8704 7.726
D, W.Q, Fr, Conc. ,r, D, ,m,s \Y 0.8757 7.2326
V, W, Q, Fr,Conc.,r,D,,m, s D 0.8587 7.674
V, D, Q, Fr, Conc. ,r, D,, m, s W 0.8704 7.3726
V,D, W, Fr, Conc.,r,D,, m, s 0.8701 7.3694
V,D,W,Q, Conc.,1,D,,m, s Fr 0.8751 7.247
V,D,W,Q,Fr,r,D,,m,s Conc. 0.7641 9.667
V,D, W, Q, Fr, Conc., D, , m ,s r 0.8313 8.2828
V,D,W.Q, Fr, Conc., 1, m,s D, 0.5464 12.737
V,D, W, Q, Fr, Conc. .1, D, ,s. m 0.8418 8.053
V,D, W, Q, Fr, Conc. ,r, D, ,m. S 0.8674 7.4837
each of the input parameters on the efficiency of silt ejector.
Several factors affect the removal efficiency of silt ejector. REFERENCES i
1 Ansari, M. and Khan, M., 2014. "Performance

These include width of channel, size of silt, concentration of
silt, flow depth, approach velocity, number of main tunnel, sub
tunnel and extraction ratio. Various input combinations as
shown in Table 3 were considered by removing one input
variable in each case and its influence on predicted efficiency
was evaluated in terms of the root mean square error and

assessment of vortex settling chambers.” ISH Journal of
Hydraulic Engineering,10.1080/09715010.2014.925330,
pp324-338.

2. Athar M., Kothyari, U. C. and Garde, R J., 2002.
“Sediment Removal Efficiency of Vortex Chamber Type

47



10.

11.

12.

13.

14.

15.

Sediment Extractor” Journal of Hydraulic Engineering,
ppl051-1059.

Atkinson, E. and Lawrence, P., 1984. “A Quantitative
Design Method for Tunnel Type Sediment Extractors.”
Fourth Cong., Asian and Pacific Division, International
Association for Hydraulic Research, Chiang Mai-
Thailand, pp 77-81.

Atkinson, E., 1984. “A Design Procedure for Tunnel
Type Sediment Extractor.” Report No OD/TNG,
Hydraulics Research, Wallingford, UK.

Atkinson, E., 1987. “Field Verification of a Performance
Prediction Method for Canal Sediment Extractor.”
Report No. OD 90, Hydraulics Research, Wallingford,
UK.

Cortes, C. and Vapnik, V.N., 1995. “Support vector
networks.” Machine Learning; 20(3): pp273-297.

Choudhary, G. and Mitra, R., 2004. “A holistic Design of
Silt  Ejector”, Major Project Submitted in partial
Fulfilment of the Requirements for the Award of the
Degree of B.Tech in Civil Eng, NIT Kurukshetra 136
119.

Dhillon, G.S, Aggarwal, R.K and Kotwal, A.N., 1977.
“Model Prototype Study of Sediment Ejectors on Upper
Bari Doab Hydraulic channel.” Prac. 40" Reo, Session
of CBIP, 3, India, pp47-56

Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott,
M. B, 2001. “Model induction with support vector
machines: Introduction and applications.” J. Comput.
Civ. Eng., 153, pp208-216.

Gilardi, N., Kanevski, M., Maignan, M., and Mayoraz,
E., 1999. “Environmental and pollution spatial data
classification with support vector machines and
geostatistics.” Proc., Workshop W07 Intelligent Tech-
niques  for Spatio-Temporal Data Analysis in
Environmental Applications, ACAI99 , Greece, July,
pp43-51.

Garde, R.J and Pande, P. K., 1976. “Use of Sediment
Transport Concept in Design of tunnel type sediment
excluders.” ICID Bulletin, 25, No 2, ppl01-111.

Gautam, Suchitra Rani, 2005. “Computer Aided Design
of Tunnel Type Silt Ejector” M.E Thesis of Civil
Engineering in  Hydraulics and Flood Control
Engineering, Delhi College of Engineering University of
Delhi Delhi-110042

HR, Wallingford, 1993. “Design Manuals for Canal
Sediment Extractors.” Vol. 1-3, Overseas Development
Unit, HR, Wallingford Ltd.

IPRI, 1988. “Sediment Trapping Efficiency of Tunnel
type Sediment Extractor at RD22.165m UBDC
Machine." Rep No: HY/R/23 87-88, Irrigation and Power
Res. Institute, Amaritsar, Punjab, India.

Kanevski, M., Pozdnukhov, A., Canu, S., Maignan, M.,
Wong, P. M., and Shibli, S. A. R., 2002. “Support vector
machines for classification and mapping of reservoir

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016

data.” Soft computing for reservoir characterization and
modelling , P. Wong, F. Aminzadeh, and M. Ni- kravesh,
eds., Physica-Verlag, Heidelberg, Germany, pp531-558.

Kothyari, U.C and Panda, P.K, 1994. Design of tunnel
type sediment excluder” journal of irrigation and
drainage engineering ,vol 120 ,No.1 ,Paper No.4502

Liu, H,, Wang, X., Tan, D., and Wang, L., 2006. “Study
on traffic information fusion algorithm based on support
vector machines.” Proc., Sixth Int. Conf. on Intelligent
Systems Design and Applications (ISDA°06), pp183—187.

Luenberger, D. G., 1984.“Linear and Nonlinear
Programming (2nd Edition).” Reading, Massachusetts,
Addison-Wesley Inc.,.

Mohammad, A., Mohammad, T. B., Abdul, S. S. And Afzd,
A., 2015. “Sediment control investigations and river flow
dynamics: impact on sediment entry into the large canal
“, Environ Earth Science Springer,Vol.74, Issue-74.

Niknia, N., Keshavarzi, A., and Hosseinipour, E., 2011.
“Improvement the Trap Efficiency of Vortex Chamber for
Exclusion of Suspended Sediment in Diverted Water.”

World Environmental and Water Resources Congress
2011: pp. 4124-4134

Pal, M., Singh, NK., and Tiwari, NK., 2010. “Support
vector regression based modeling of pier scour using
field data”. FElsevier, Engineering Applications of
Artificial Intelligence Vol.24 issue 5. pp 911-916.

Pal, M., and Mather, P. M., 2005. “Support vector
machines for classification in remote sensing.” Int. J.
Remote Sens., 26, pp1007—1011.

Pal, M., 2006. “Support vector machines-based modeling
of seismic liquefaction potential.” Int. J. Numer. Analyt.
Meth. Geomech., 30,983-996. Machine in lake water
level prediction.” J. Hydrol. Eng., 113,pp 199— 205.

Raju, K., Kothyari, U., Shrivastava, S., and Saxena, M.,
1999. "Sediment Removal Efficiency of Settling Basins.”
J. Irrig. Drain Eng., 125(5), pp 308-314.

Sarwar, M.K., Anjum, M.N. and Mahmood S., 2013.
“Impact of silt- Excluder on sediment on sediment
management of irrigation canal: A case study of D. G.
Khan canal, Pakistan.” Arab J Sci EnGG.38 (12): pp.73-
84.

Singh, K. K., 1987. “Experimental study of settling
basins.” ME thesis, Dept. of Civil Engineering, Univ. of
Roorkee, Roorkee U.P., India.

Singh, Mandeep, Banerjee, J., Patel, P.L., & Tiwari,
Himanshu, 2013. “Effect of silt erosion on Francis
turbine: a case study of Maneri Bhali Stage-II,
Uttarakhand, India”. ISH Journal of Hydraulic
Engineering Volume 19, Issue I, pp 1-10.

Singh, K. K., Pal, M., Ojha, C. S. P. and Singh, V. P.,
2008. “Estimation of Removal Efficiency for Settling
Basins Using Neural Networks and Support Vector
Machines”. J. Hydrol. Eng., 2008, 13(3): pp146-155.

48



29.

30.

31

32.

Smola, A. J., 1996. “Regression estimation with support
vector  learning  machines.”  Master’s Thesis,
TechnischeUniversitdtMiinchen, Germany,

Tiwari, N.K., 2006. “Optimal Design of Silt Ejector”,
PhD Thesis, Civil Engg. Dept.; NIT Kurukshetra (India).

UPIRI, 1975. “Sediment Excluders and Ejectors.” UP
Irrigation  Res.Institute, Roorkee, India, Design
Monograph (45-H;-6).

Vapnik, V. N., 1995. “The Nature of Statistical Learning
Theory, New York:”. Springer-Verlag, 1995.

J. Indian Water Resour. Soc., Vol 36, No. 1, January, 2016

33.

34.

35.

Vapnik, V. N., 1998. “Statistical Learning Theory, New
York: John Wiley and Sons.

Vittal, N and Shivcharan, G.A., 1994. “Diaphragm
Height of Ejector of Uniform sediment”, Vol 120, No. 3
ASCE, pp398-405.

Witten, 1. H. and Frank, E., 2005 “Data Mining:
Practical Machine Learning Tools and Techniques
(Second Edition).” San Francisco, Morgan Kaufmann.

49



