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INTRODUCTION  

Groundwater models are necessary for understanding the 

aquifer system and for predicting the changes in the system. 

With the advent of computers, numerical groundwater 

models became a powerful tool in groundwater modeling. 

The direct analytical solutions are suitable for simple 

problems involving homogeneous, isotropic aquifers and 

simple geometry. However, in reality, these assumptions are 

not valid and, in some cases, analytical methods fail. In 

order to take into account, the complexity of the system, a 

numerical method can be used.Numerical models convert 

the set of governing equations, which are in the form of 

partial derivative equations, into a set of algebraic 

equations, which are then solved. Traditional numerical 

methods which are proven to be efficient for groundwater 

modelling include Finite Difference Method (FDM), Finite 

Element Method (FEM). But, these methods are based on a 

mesh and meshing and remeshing process is cumbersome 

and computationally expensive. This led to the development 

of meshless methods, in which these limitations are 

overcome.  

Various meshless methods have been presented in the 

recent years. Based on the formulation, meshless methods 

can be broadly classified as weak forms and strong forms 

[6]. Meshless weak forms have an advantage that the 

implementation of derivative boundary conditions is direct. 

The governing equation for groundwater flow is a partial 

differential equation [4], which is converted into a set of 

algebraic equations for solving. Various meshless methods 

were discussed by Liu and Gu [6]. A truly meshless 

method, the Meshless Local Petrov Galerkin Method 

(MLPG) was first proposed by Atluri and Zhu [2]. This 

method does not require any background mesh for the 

purpose of integration and interpolation. This method uses 

overlapping local support domains. 

For groundwater flow simulation studies, Mategaonkar and 

Eldho [7] developed the strong form polynomial point 

collocation method with multiquadric radial basis function, 

Guneshwor et al. [5] developed meshless radial point 

collocation method. Swathi and Eldho [9] applied MLPG 

with exponential radial basis function for flow problems. 

Wang et al. [11] developed the Improved Interpolating 

Moving Least Squares technique (IIMLS), in which the 

limitations of Moving Least Squares (MLS) scheme, such 

as difficulty in applying essential boundary conditions, is  

overcome. 

In this paper, the MLPG method with Improved 

Interpolating Moving Least Squares (IIMLS) approximation 

is used for groundwater flow simulation. The numerical 

model is developed in MATLAB and is verified for 

hypothetical problems. Further, the proposed model is 

applied to a field case study. 

Governing Equation and Meshless Formulation 

For a heterogeneous, anisotropic confined aquifer, the 

governing equation is given by [4]: 

𝜕

𝜕𝑥
 𝑇𝑥

𝜕ℎ

𝜕𝑥
 + 

𝜕

𝜕𝑦
 𝑇𝑦

𝜕ℎ

𝜕𝑦
 =  𝑆

𝜕ℎ

𝜕𝑡
 ±  𝑄𝑤𝛿 𝑥 −

𝑊
𝑤=1

𝑥𝑤  𝑦 − 𝑦𝑤 −  𝑓    (1) 

The initial condition can be taken as: 

h (x, y, 0) = h0 (x, y)       (x, y)  ∈  Ω   (2) 
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The boundary conditions (BC) are of two types: the 

constant head boundary condition (essential or Dirichlet 

boundary condition) and constant flux boundary condition 

(natural or Neumann boundary condition): 

h (x, y, t) = h1(x, y, t)     (x, y)  ∈ ℾ 1  (Dirichlet BC) 

𝑇
𝑑ℎ

𝑑𝑛
= 𝑞 𝑥, 𝑦, 𝑡      (x, y)  ∈  ℾ 2  (Neumann BC) (3) 

Here, Tx and Ty represent transmissivity in x and y 

directions respectively, S is the storage coefficient, δ is 

Dirac delta function, Qw is the source/sink (negative sign for 

source and positive sign for sink),(xw, yw) and Warethe 

location and the total number of source/sink,fis known 

inflow rate, t is time,Ω is the flow domain, ℾ is the domain 

boundary and suffixes 1 and 2 represent essential and 

natural boundaries, h0 is the initial head in the aquifer, T 

may be Tx or Ty,and n is the normal vector of the boundary, 

h1 is constant head on Dirichlet boundary and q is inflow at 

Neumann boundary.  

In MLPG, which is a weak form method, the governing 

partial differential equation is multiplied by a suitable test 

function and then integrated. In this study, MLPG5 method 

is used [3], therefore, the test function is Heaviside step 

function. For a homogeneous confined aquifer, the equation 

(1) can be written as,  

𝛻 𝑇𝛻ℎ =    𝑄𝑤𝛿 𝑟 − 𝑟𝑤  −  𝑓 + 𝑆
𝜕ℎ

𝜕𝑡

𝑊
𝑤=1                 (4) 

Here, r is position vector, δ(r – rw) is Dirac delta function, 

which is equal to zero if r ≠ rw and  𝜹(𝒓 – 𝒓𝒘)𝒅𝜴
𝜴

= 𝟏 for 

rw∈Ω. 

Let υ be the test function. Multiplying the governing 

equation (4) by υ and integrating it over the sub-domain Ωs: 

 𝛻(𝑇
𝛺𝑠

𝛻ℎ) 𝜐𝑑𝛺 =    𝑄𝑤𝛿 𝑟 − 𝑟𝑤 𝜐𝑑𝛺 −𝑊
𝑤=1𝛺𝑠

 𝛺𝑠𝑓𝜐𝑑𝛺+ 𝛺𝑠𝑆𝜕ℎ𝜕𝑡𝜐𝑑𝛺                                                       (5) 

Using the divergence theorem to first term of equation (5),  

 ∇(T
Ωs

∇h) υ dΩ =    T∇h nυdΩ
∂Ωs

−   T∇h ∇υdΩ
Ωs

         (6) 

Substituting equation (6) and the Heaviside step function 

values (υ = 1 for r in Ωs and 0 outside Ωs and ∇υ = 0) in 

equation (5), 

 (𝑇
𝜕𝛺𝑠

𝛻ℎ) 𝑛 𝑑𝛺 =   𝑄𝑤 −𝑊
𝑤=1  𝑓𝑑𝛺

𝛺𝑠
+   𝑆

𝜕ℎ

𝜕𝑡𝛺𝑠
𝑑𝛺  (7) 

where, ∂Ωs  represents the boundary of Ωs. 

Assuming that, within a sub domain, T and f remain 

constant and maximum of single source is active at a time, 

equation (7) can be reduced to,  

𝑇𝑗  
𝜕ℎ

𝜕𝑛
 𝑑𝛺

𝜕𝛺𝑠,𝑗
=  𝑄𝑗 − 𝑓𝑗𝐴𝛺𝑠 +  𝑆

𝜕ℎ

𝜕𝑡𝛺𝑠
𝜗𝑑𝛺                   (8) 

where, j represents node, AΩs
 is the area of the sub domain, 

∂h

∂n
=  ∇hn =  

∂h

∂x
nx +

∂h

∂y
ny . 

In this study, circular sub-domains are used which are 

centered at nodes. Nodes can be distributed or irregularly. 

Some nodes are placed at the source points. Considering N 

as the total number of nodes, the head can be estimated as 

[3]: 

ℎ =   ∅𝑖ℎ𝑖 
𝑁
𝑖=1                                                             (9) 

whereĥi is the fictitious head and Фi(r) is the shape function. 

The summation in equation (9) is extended to support sub-

domain which is different from the sub-domain. The sub-

domain radius is taken as a small value, to maintain the 

local character of problem and the support sub domain must 

be larger, to estimate with respect to many surrounding 

nodes [6]. 

The dependent variable h and its derivatives are computed 

as: 

𝜕ℎ

𝜕𝑥
=   

𝜕∅𝑖

𝜕𝑥

𝑁
𝑖=1 ℎ𝑖   𝑎𝑛𝑑  

𝜕ℎ

𝜕𝑦
=   

𝜕∅𝑖

𝜕𝑦

𝑁
𝑖=1 ℎ𝑖      (10) 

Substituting equation (10) in (8), 

𝜕ℎ

𝜕𝑛
=  𝛻ℎ𝑛 =  

𝜕ℎ

𝜕𝑥
𝑛𝑥 + 

𝜕ℎ

𝜕𝑦
𝑛𝑦 =  

𝜕∅𝑖

𝜕𝑥
ℎ𝑖  𝑛𝑥 +  

𝜕∅𝑖

𝜕𝑦
ℎ𝑖  𝑛𝑦     (11) 

Studies of Pinder and Gray [8] and Wang and Anderson 

[10], proved that finite difference method is the best for 

time discretization [9]. Hence, Crank Nicolson scheme with 

weight factor θ = 0.5 is adopted in this study. For a function 

G, the time discretization can be thus done as: 

𝜕ℎ 

𝜕𝑡
=

ℎ 𝑡+1− ℎ 𝑡

∆𝑡
= 𝜃 𝐺𝑡+1 ℎ, 𝑥, 𝑦  + (1 −  𝜃) 𝐺𝑡 ℎ, 𝑥, 𝑦  

        (12) 

Substituting equations (12) and (10) in (8), 

 𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
ℎ 𝑡+1𝑛𝑥 +  

𝜕∅𝑖

𝜕𝑦
ℎ 𝑡+1𝑛𝑦 𝑑𝛺𝜕𝛺𝑠,𝑗

 𝜃 +

 𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
ℎ 𝑡𝑛𝑥  +

𝜕∅𝑖

𝜕𝑦
ℎ 𝑡𝑛𝑦 𝑑𝛺𝜕𝛺𝑠,𝑗

  1 − 𝜃 =  𝑄𝑗 −

 𝑓𝑗𝐴𝛺𝑠 +  𝑆  
ℎ 𝑡+1− ℎ 𝑡

∆𝑡
  𝑑𝛺

𝛺𝑠
                                           (13) 

On rearranging the terms of equation (13),  

  𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
𝑛𝑥 + 

𝜕∅𝑖

𝜕𝑦
𝑛𝑦 𝜕𝛺𝑠,𝑗

𝑑𝛺 𝜃 −  
𝑆

∆𝑡
 𝑑𝛺

𝛺𝑠
  ℎ 𝑡+1  =

 𝑄𝑗 − 𝑓𝑗𝐴𝛺𝑠 −   𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
𝑛𝑥 + 

𝜕∅𝑖

𝜕𝑦
𝑛𝑦 𝜕𝛺𝑠,𝑗

𝑑𝛺 (1 − 𝜃) −

 𝛺𝑠𝑆∆𝑡 𝑑𝛺ℎ𝑡                                                               (14) 

Thus, the system of equations can be written as: 

K h t+1 = F                                                                      (15) 

In equation (15), 

(4.10) 
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𝐾 =    𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
𝑛𝑥 +  

𝜕∅𝑖

𝜕𝑦
𝑛𝑦 𝜕𝛺𝑠,𝑗

𝑑𝛺 𝜃 −  
𝑆

∆𝑡
 𝑑𝛺

𝛺𝑠
  (16)              

𝐹 = 𝑄𝑗 − 𝑓𝑗𝐴𝛺𝑠 −   𝑇𝑗   
𝜕∅𝑖

𝜕𝑥
𝑛𝑥 +  

𝜕∅𝑖

𝜕𝑦
𝑛𝑦 𝜕𝛺𝑠,𝑗

𝑑𝛺    (1 −

𝜃)− 𝛺𝑠𝑆∆𝑡 𝑑𝛺ℎ𝑡     (17) 

The solution can be computed by solving the matrix. Then 

iteratively, the right side of F vector acts as the new F 

vector. By the solution, ĥt+1 which is used in the next 

iteration is found. For each main node inside the domain, 

equation (17) can be used to build the linear equation in the 

unknown ĥt. The integral is computed for the circumference 

by Gauss Quadrature method.  

A constant head boundary is applied using the penalty 

method, with α as penalty function: 

∝   ℎ − ℎ𝑖 𝑑𝛤𝛤1
= 0     (18) 

A no flow boundary condition can be applied as: 

𝑇𝑗  
𝜕ℎ

𝜕𝑛
 𝑑𝛤 =  − 𝑞𝑗𝐴𝛺𝑠      𝑎𝑠 

𝜕ℎ

𝜕𝑛
= 0 𝑖𝑛 𝛤2𝛤2

   (19) 

The Neumann boundary condition with a constant normal 

flux can be applied as: 

𝑇𝑗  
𝜕ℎ

𝜕𝑛
 𝑑𝛤 +  𝑞 =  − 𝑞𝑗𝐴𝛺𝑠     𝑎𝑠    𝑇𝑗  

𝜕ℎ

𝜕𝑛
 𝑑𝛤 = 𝑞

𝛤2𝛤2
 (20) 

In the case of confined heterogeneous and/or anisotropic 

aquifers, the values of transmissivities at different zones are 

considered andthe transmissivities in x and y directions are 

substituted. 

Model Development and Verification 

The groundwater flow model is developed based on the 

above formulation. The steps involved in the model 

development are given below: 

Step 1: The input values of transmissivity, porosity, 

boundary conditions, aquifer dimensions, recharge details 

etc., are taken and the time step and total time are fixed. 

Step 2: The number of divisions is decided. The pattern of 

nodes (regular or irregular) is decided. The number of 

additional nodes required per source point is fixed. The size 

of support domain and sub domain are also fixed.  

Step 3: The sub domains are constructed for all the nodes. 

The formulation is done in the code.  

Step 4: The head values at all the nodes are obtained. For 

transient analysis, the head from previous time step is used 

as initial condition for current time step. The procedure is 

repeated till the final time step is reached.  

Fig. 1 shows the flow chart of the MLPG model for the 

groundwater flow model in the confined aquifer. 

 

Fig. 1. Flowchart for MLPG based Flow Model for a 

Confined Aquifer 

The developed flow model is applied to a hypothetical 

confined aquifer and the results are compared with the FEM 

results given by Willis and Yeh [12]. The problem domain 

is shown in Fig. 2. In the Fig., Lx and Ly are the domain 

size in the x and y directions respectively. h is the head. The 

aquifer domain has dimensions of 1400 m × 1400 m. A 

constant head of 100 m is considered on the right and left 

boundaries and the top and bottom boundaries are assumed 

no flux boundaries. The transmissivity value is 100 m
2
/day 

and the Storativity is 0.001. Initial head for the simulation 

of the transient state problem is taken as 100 m. A pumping 

well is located at the center of the aquifer and the pumping 

rate is 10000 m
3
/day. 

 

Fig. 2. Aquifer domain for hypothetical case study 
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Table 1. Comparison of head values obtained from 

MLPG and FEM with the analytical solution for 

hypothetical case study 

Node 

number 

Analytical  

(m) 

FEM 

(m) 

Percentage 

difference 

MLPG 

(m) 

Percentage 

difference 

15 100 100 0 100 0 

29 97.013 96.993 0.0021 96.875 0.142 

43 93.804 93.768 0.038 93.645 0.169 

57 90.095 90.051 0.049 89.961 0.148 

71 85.451 85.413 0.044 85.327 0.145 

85 78.983 78.974 0.011 78.853 0.088 

99 67.953 67.762 0.281 67.765 0.277 

The bottom left corner is taken as origin. The number of 

divisions in horizontal and vertical directions is 14 each. 

The nodes are numbered vertically, i.e., the point (0, 6000) 

is node number 15. Observation wells are located at the 

nodes  29,  43,  57,  71, 85  and 99. Fig. 3  shows  the  nodal 

  

Fig. 3: Nodal arrangement for hypothetical case study 

 

Fig. 4: Contour plot for head distribution in 

hypothetical case study 

arrangement along with the location of pumping and 

observation wells. 

The results of the MLPG flow model are compared with the 

FEM results given by Willis and Yeh [12] and Mategaonkar 

and Eldho [7]. The simulation time is 10 days with a time 

step of 0.2 days. The radius of support domain is taken as 

twice the distance between the nodes. The total number of 

nodes is 225. The contour plot of the interpolated head 

values is illustrated in Fig. 4. The comparison of head 

values at observation wells obtained from MLPG and FEM 

is shown in Table 1. The results are sufficiently accurate.  

These results are greatly affected by the parameters like the 

size of the support domain and the size of the integration 

sub domain. 

Field Case Study 

The developed MLPG groundwater flow model is tested for 

a field problem. The data is taken from Anshuman et al. [1] 

and Guneshwor et al. [5]. The study area is located in 

Gujarat, India. The area of the aquifer is 4.5 km
2
 and the 

aquifer is a heterogeneous confined aquifer [5].  There are 

11 different transmissivity zones with the transmissivity 

value varying from 30 m
2
/day to 170 m

2
/day. The north, 

south, north-east and south west boundaries are bounded by 

a lake, with head values varying from 45 m to 47.5 m. 

There is a recharge zone in the aquifer which recharges at 

0.045 m/day. The aim of this study is to calculate the head 

values in the aquifer and compare the results with the 

available FEM solution. 

Fig. 5a shows the aquifer domain and the transmissivity 

zones. Fig. 5b depicts the nodal arrangement. A steady state 

model is developed for head variation. 1008 nodes are used 

all over the boundary. In this study, for MLPG method, the 

integration is done using Gauss Quadrature. θ value of 

equation (17) is taken as 0.5. 

The factor for support domain is taken as 3.5. Fig. 6 shows 

the MLPG head values over the entire domain. Table 2 

shows the comparison of the interpolated head values with 

the results from FEM and the results are found to be in 

agreement. The results of FEM are taken from Guneshwor 

et al. [5]. The MLPG solutions are very well matching with 

the FEM results, with a maximum difference of 0.69% 

between the results. 
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Fig. 5. (a) Problem domain and zones of transmissivity 

(b)Nodal arrangement for field case study 

Table 2. Comparison of results of field case study 

obtained from MLPG and FEM models 

Node Head 

from 

FEM (m) 

Head from 

MLPG (m) 

Percentage 

difference 

448 46.8 46.9 0.18 

558 46.8 47.0 0.51 

662 46.5 46.6 0.32 

552 46.5 46.4 0.14 

670 46.8 47.1 0.69 

730 46.5 46.7 0.39 

 

Fig 6. Contour plot of heads for field case study 

 

DISCUSSION 

Meshless methods resolve the problem of meshing and 

remeshing in the traditional FDM, FEM methods. The 

whole domain is represented by a set of nodes, which do not 

require a background mesh. MLPG method has many 

advantages. It is a truly meshless method and no 

background mesh is required in stages of integration and 

interpolation. The implementation of the derivative 

boundary conditions is simple and direct. The solutions are 

stable and accurate. Local sub domains are used for 

integration in this method and the formulation is completely 

local. 

The MLPG method was used for groundwater flow 

modeling. The developed model was verified with a 

hypothetical case study, in transient state condition and the 

results obtained were satisfactory. The model was applied to 

a real field aquifer [5] and the results were similar to the 

results obtained from FEM.  Hence, MLPG can be 

successfully used in groundwater flow studies for larger 

field problems. 

CONCLUSIONS 

In this study, a Meshless Local Petrov Galerkin (MLPG) 

method with IIMLS scheme was developed for the 

groundwater flow modelling.  MLPG being a truly meshless 

method, the pre-processing efforts have been considerably 

reduced when compared to FDM and FEM. The developed 

model was tested on a hypothetical problem and a real field 

problem, and the results were accurate in both the cases. 

The MLPG solutions are in excellent agreement with the 

FEM solutions. However, the model results are highly 

dependent on the size of the support domain. This 

dependency is to be further studied. The meshless model 

proposed here can be efficiently used for large scale field 

problems. 
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